Skip to main content
Log in

An insert in the motor domain determines the functional properties of expressed smooth muscle myosin isoforms

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Smooth muscle myosin isoforms of the heavy chain and the essential light chain have been hypothesized to contribute to the different shortening velocities of phasic and tonic smooth muscles, and to their different affinities for MgADP. We used the baculovirus/insect cell system to express homogeneous heavy meromyosin molecules differing onlyin a seven amino acid insert (QGPSFSY) in the motor domain near the active site, or in the type of essential light chain isoform. Myosin from tonic rabbit uterine smooth muscle lacks the heavy chain insert, while myosin from phasic chicken gizzard contains it. The properties of a mutant uterine heavy meromyosin with added insert, and a mutant gizzard heavy meromyosin with the insert deleted, were compared with their wild type progenitors. Phosphorylated heavy meromyosins with the insert have a twofold higher enzymatic activity and in vitro motility than heavy meromyosins without the insert. These functional properties were not altered by the essential light chain isoforms. The altered motility caused by the insert implies that it modulates the rate of ADP release, the molecular step believed to limit shortening velocity. The insert may thus account in part for both the lower sensitivity to MgADP and the higher shortening velocity of phasic compared to tonic smooth muscles

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BABIJ, P., KELLY, C. & PERIASAMY, M. (1991) Characterization of a mammalian smooth muscle myosin heavy-chain gene: complete nucleotide and protein coding sequence and analysis of the 5′ end of the gene. Proc. Natl. Acad. Sci. USA 88, 10676–80.

    Article  PubMed  CAS  Google Scholar 

  • BARANY, M. (1967) ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol. 50, 197–216.

    Article  PubMed  Google Scholar 

  • CUDA, G., FANANAPAZIR, L., ZHU, W. Z., SELLERS, J. & EPSTEIN, N. D. (1993) Skeletal muscle expression and abnormal function of β-myosin in hypertrophic cardiomyopathy. J. Clin. Invest. 91, 2861–5.

    Article  PubMed  CAS  Google Scholar 

  • EDDINGER, T. J. & MURPHY, R. A. (1988) Two smooth muscle myosin heavy chains differ in their light meromyosin fragment. Biochemistry 27, 3807–11.

    Article  PubMed  CAS  Google Scholar 

  • FUGLSANG, A., KHROMOV, A., TÖRÖK, K., SOMLYO, A. V. & SOMLYO, A.P. (1993) Flash photolysis studies of relaxation and cross-bridge detachment: Higher sensitivity of tonic than phasic smooth muscle to MgADP. J. Muscle Res. Cell Motil. 14, 666–77.

    Article  PubMed  CAS  Google Scholar 

  • GONG, M. C., COHEN, P., KITAZAWA, T., IKEBE, M., MASUO, M., SOMLYO, A. P. & SOMLYO, A. V. (1992) Myosin light chain phosphatase activities and the effects of phosphatase inhibitors in tonic and phasic smooth muscle. J. Biol. Chem. 267, 14662–8.

    PubMed  CAS  Google Scholar 

  • GREASER, M. L., MOSS, R. L. & REISER, P. J. (1988) Variations in contractile properties of rabbit single muscle fibres in relation to troponin T isoforms and myosin light chains. J. Physiol. 406, 85–98.

    PubMed  CAS  Google Scholar 

  • HASEGAWA, Y. & MORITA, F. (1992) Role of 17-kDa essential light chain isoforms of aorta smooth muscle myosin. J. Biochem. 111, 804–9.

    PubMed  CAS  Google Scholar 

  • HELPER, D. J., LASH, J. A. & HATHAWAY, D. R. (1988) Distribution of isoelectric variants of the 17,000-dalton myosin light chain in mammalian smooth muscle. J. Biol. Chem. 263(30), 15748–53.

    PubMed  CAS  Google Scholar 

  • HORIUTI, K., SOMLYO, A. V., GOLDMAN, Y. E. & SOMLYO, A. P. (1989) Kinetics of contraction initiated by flash photolysis of caged adenosine triphosphate in tonic and phasic smooth muscles. J. Gen. Physiol. 94, 769–81.

    Article  PubMed  CAS  Google Scholar 

  • KELLEY, C. A., SELLERS, J. R., GOLDSMITH, P. K. & ADELSTEIN, R. S. (1992) Smooth muscle myosin is composed of homodimeric heavy chains. J. Biol. Chem. 267(4), 2127–30.

    PubMed  CAS  Google Scholar 

  • KELLEY, C. A., TAKAHASHI, M., YU, J. H. & ADELSTEIN, R. S. (1993) An insert of seven amino acids confers functional differences between smooth muscle myosins from the intestines and vasculature. J. Biol. Chem. 268, 12848–54.

    PubMed  CAS  Google Scholar 

  • KHROMOV, A., SOMLYO, A. V., TRENTHAM, D. R., ZIMMERMANN, B. & SOMLYO, A. P. (1995) The role of MgADP in force maintenance by dephosphorylated cross-bridges in smooth muscle: a flash photolysis study. Biophys. J. 69, 2611–22.

    Article  PubMed  CAS  Google Scholar 

  • LITTEN, R. Z., MARTIN, B. J., LOW, R. B. & ALPERT, N. R. (1982) Altered myosin isozyme patterns from pressure overloaded and thyrotoxic hypertrophied rabbit hearts. Circ. Research 50, 856–64.

    CAS  Google Scholar 

  • LOWEY, S., WALLER, G. S. & TRYBUS, K. M. (1993) Skeletal muscle myosin light chains are essential for physiological speeds of shortening. Nature 365, 454–6.

    Article  PubMed  CAS  Google Scholar 

  • MALMQVIST, U. & ARNER, A. (1991) Correlation between isoform composition of the 17 kDa myosin light chain and maximal shortening velocity in smooth muscle. Pflügers Arch. 418(6), 523–30.

    Article  PubMed  CAS  Google Scholar 

  • NABESHIMA, Y., NABESHIMA, Y.-I., NONOMURA, Y. & FUJ II-KURIYAMA, Y. (1987) Nonmuscle and smooth muscle myosin light chain mRNAs are generated from a single gene by the tissue-specific alternative RNA splicing. J. Biol. Chem. 262(22), 10608–12.

    PubMed  CAS  Google Scholar 

  • NAGAI, R., KURO-O, M., BABIJ, P. & PERIASAMY, M. (1989) Identification of two types of smooth muscle myosin heavy chain isoforms by cDNA cloning and immunoblot analysis. J. Biol. Chem. 264(17), 9734–7.

    PubMed  CAS  Google Scholar 

  • O’REILLY, D. R., MILLER, L. K. & LUCKOW, V. A. (1992) Baculovirus Expression Vectors. A Laboratory Manual. New York: W. H. Freeman and Co.

    Google Scholar 

  • PERRIE, W. T. & PERRY, S. V. (1970) An electrophoretic study of the low-molecular-weight components of myosin. Biochem. J. 119, 31–8.

    PubMed  CAS  Google Scholar 

  • RAYMENT, I., RYPNIEWSKI, W. R., SCHMIDT-BÄSE, K., SMITH, R., TOMCHICK, D. R., BENNING, M. M., WINKELMANN, D. A., WESENBERG, G. & HOLDEN, H. M. (1993) Three-dimensional structure of myosin sub-fragment-1: a molecular motor. Science 261, 50–8.

    PubMed  CAS  Google Scholar 

  • ROVNER, A. S., FREYZON, Y. & TRYBUS, K. M. (1995) Chimeric substitutions of the actin-binding loop activate dephosphorylated but not phosphorylated smooth muscle heavy meromyosin. J. Biol. Chem. 270, 30260–3.

    Article  PubMed  CAS  Google Scholar 

  • SIEMANKOWSKI, R. F., WISEMAN, M. O. & WHITE, H. D. (1985) ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc. Natl Acad. Sci. USA 82, 658–62.

    Article  PubMed  CAS  Google Scholar 

  • SOMLYO, A. P. (1993) Myosin isoforms in smooth muscle: how may they affect function and structure? J. Muscle Res. Cell Motil. 14, 557–63.

    Article  PubMed  CAS  Google Scholar 

  • SPUDICH, J. A. (1994) How molecular motors work. Nature 372, 515–18.

    Article  PubMed  CAS  Google Scholar 

  • SWEENEY, H. L., KUSHMERICK, M. J., MABUCHI, K., SRETER, F. A. & GERGELY, J. (1988) Myosin alkali light chain and heavy chain variations correlate with altered shortening velocity of isolated muscle fibers. J. Biol. Chem. 263(18), 9034–9.

    PubMed  CAS  Google Scholar 

  • SWEENEY, H. L., FAUST, L., SMITH, J. E., BROWN, F., MILLIGAN, R. A., SELLERS, J. R. & STEIN, L. A. (1996) Function of the 25/50 KDA loop of the myosin II motor. Biophys. J. 70(2) (Part 2), A149(Abstract).

  • TRYBUS, K. M. (1994) Regulation of expressed truncated smooth muscle myosins. Role of the essential light chain and tail length. J. Biol. Chem. 269(33), 20819–22.

    PubMed  CAS  Google Scholar 

  • TRYBUS, K. M., & HENRY, L. (1989) Monoclonal antibodies detect and stabilize conformational states of smooth muscle myosin. J. Cell Biol. 109(6 Pt 1), 2879–86.

    Article  PubMed  CAS  Google Scholar 

  • WARSHAW, D. M., DESROSIERS, J. M., WORK, S. S. & TRYBUS, K. M. (1990) Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J. Cell Biol. 111(2), 453–63.

    Article  PubMed  CAS  Google Scholar 

  • WARSHAW, D. M., DESROSIERS, J. M., WORK, S. S. & TRYBUS, K. M. (1991) Effects of MgATP, MgADP and Pi on actin movement by smooth muscle myosin. J. Biol. Chem. 266(36), 24339–43.

    PubMed  CAS  Google Scholar 

  • WHITE, S., MARTIN, A. F. & PERIASAMY, M. (1993) Identification of a novel smooth muscle myosin heavy chain cDNA: Isoform diversity in the S1 head region. Am. J. Physiol. 264, C1252–8.

    PubMed  CAS  Google Scholar 

  • YANAGISAWA, M., HAMADA, Y., KATSURAGAWA, Y., IMAMURA, M., MIKAWA, T. & MASAKI, T. (1987) Complete primary structure of vertebrate smooth muscle myosin heavy chain deduced from its complementary DNA Sequence. Implications on topography and function of myosin. J. Mol. Biol. 198, 143–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ROVNER, A.S., FREYZON, Y. & TRYBUS, K.M. An insert in the motor domain determines the functional properties of expressed smooth muscle myosin isoforms. J Muscle Res Cell Motil 18, 103–110 (1997). https://doi.org/10.1023/A:1018689102122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018689102122

Keywords

Navigation