Skip to main content
Log in

On the Nature of Continuous Physical Quantities in Classical and Quantum Mechanics

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

Within the traditional Hilbert space formalism of quantum mechanics, it is not possible to describe a particle as possessing, simultaneously, a sharp position value and a sharp momentum value. Is it possible, though, to describe a particle as possessing just a sharp position value (or just a sharp momentum value)? Some, such as Teller, have thought that the answer to this question is No – that the status of individual continuous quantities is very different in quantum mechanics than in classical mechanics. On the contrary, I shall show that the same subtle issues arise with respect to continuous quantities in classical and quantum mechanics; and that it is, after all, possible to describe a particle as possessing a sharp position value without altering the standard formalism of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Birkhoff, G. and von Neumann, J.: 1936, The logic of quantum mechanics, Ann. of Math. 37, 823–843.

    Google Scholar 

  2. Bub, J.: 1997, Interpreting the Quantum World, Cambridge University Press.

  3. Bub, J. and Clifton, R.: 1996, A uniqueness theorem for ‘no-collapse’ interpretations of quantum mechanics, Stud. Hist. Philos. Modern Phys. 27, 181–219.

    Google Scholar 

  4. Busch, P., Grabowski, M., and Lahti, P. J.: 1997, Operational Quantum Physics, Springer, New York.

    Google Scholar 

  5. Dalla Chiara, M. L.: 1994, Unsharp quantum logics, Internat. J. Theoret. Phys. 34, 1331–1336.

    Google Scholar 

  6. Dalla Chiara, M. L. and Giutini, R.: 1994, Partial and unsharp quantum logics, Found. Phys. 24, 1161–1177.

    Google Scholar 

  7. Clifton, R.: 1999, Beables in algebraic quantum theory, in J. Butterfield and C. Pagonis (eds.), From Physics to Philosophy, Cambridge University Press, pp. 12–44.

  8. Fine, A.: 1971, Probability in quantum mechanics and in other statistical theories, in M. Bunge (ed.), Problems in the Foundations of Physics, Springer, New York, pp. 79–92.

    Google Scholar 

  9. Foulis, D. J. and Bennett, M. K.: 1994, Effect algebras and unsharp quantum logics, Found. Phys. 24, 1331–1352.

    Google Scholar 

  10. Garnir, H. G., DeWilde M., and Schmets, J.: 1968, Analyse Fonctionnelle: Théorie constructive des espaces linéaires à semi-normes, Birkhäuser, Basel.

    Google Scholar 

  11. Gleason, A. M.: 1957, Measures on the closed subspaces of a Hilbert space, J. Math. Mech. 6(6), 885–893.

    Google Scholar 

  12. Halvorson, H. and Clifton, R.: 1999, Maximal beable subalgebras of quantum mechanical observables, Internat. J. Theoret. Phys. 38, 2441–2484.

    Google Scholar 

  13. Hirsch, F. and Lacombe, G.: 1999, Elements of Functional Analysis, Springer, New York.

    Google Scholar 

  14. Just, W. and Weese, M.: 1991, Discovering Modern Set Theory, Amer. Math. Soc., Providence, RI.

    Google Scholar 

  15. Kadison, R. and Ringrose J.: 1997, Fundamentals of the Theory of Operator Algebras, Amer. Math. Soc., Providence, RI.

    Google Scholar 

  16. Mackey, G. W.: 1968, Mathematical Foundations of Quantum Mechanics, W.A. Benjamin, New York.

    Google Scholar 

  17. Moschovakis, Y. N.: 1994, Notes on Set Theory, Springer, New York.

    Google Scholar 

  18. Pincus, D. and Solovay, R. M.: 1977, Definability of measures and ultrafilters, J. Symbolic Logic 42, 179–190.

    Google Scholar 

  19. Schechter, E.: 1997, Handbook of Analysis and its Foundations, Academic Press, New York.

    Google Scholar 

  20. Summers, S. J.: (forthcoming), On the Stone–von Neumann uniqueness theorem and its ramifications, in M. Redei and M. Stoelzner (eds.), John von Neumann and the Foundations of Quantum Mechanics, Kluwer Acad. Publ., Dordrecht.

  21. Teller, P.: 1979, Quantum mechanics and the nature of continuous physical quantities, J. Philos. LXXVI, 345–361.

    Google Scholar 

  22. Varadarajan, V. S.: 1985, Geometry of Quantum Theory, Springer, New York.

    Google Scholar 

  23. von Neumann, J.: 1931, Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann. 104, 570–578.

    Google Scholar 

  24. von Neumann, J.: 1932, Operatorenmethoden in der klassischen Mechanik, Ann. of Math. 33, 595–598.

    Google Scholar 

  25. von Neumann, J.: 1932, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin.

    Google Scholar 

  26. Wright, J. D. M.: 1977, Functional analysis for the practical man, in K.-D. Bierstedt and B. Fuchssteiner (eds.), Functional Analysis: Surveys and Recent Results, North-Holland, Amsterdam, pp. 283–290.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halvorson, H. On the Nature of Continuous Physical Quantities in Classical and Quantum Mechanics. Journal of Philosophical Logic 30, 27–50 (2001). https://doi.org/10.1023/A:1017574203443

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017574203443

Navigation