Skip to main content
Log in

Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A polymer electrolyte membrane fuel cell operational at temperatures around 150–200 °C is desirable for fast electrode kinetics and high tolerance to fuel impurities. For this purpose polybenzimidazole (PBI) membranes have been prepared and H3PO4-doped in a doping range from 300 to 1600 mol %. Physiochemical properties of the membrane electrolyte have been investigated by measurements of water uptake, acid doping level, electric conductivity, mechanical strength and water drag coefficient. Electrical conductivity is found to be insensitive to humidity but dependent on the acid doping level. At 160 °C a conductivity as high as 0.13 S cm−1 is obtained for membranes of high doping levels. Mechanical strength measurements show, however, that a high acid doping level results in poor mechanical properties. At operational temperatures up to 190 °C, fuel cells based on this polymer membrane have been tested with both hydrogen and hydrogen containing carbon monoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Gottesfeld and T.A. Zawodzinski, in R.C. Alkire, H. Gerischer, D.M. Kolb and C.W. Tobias (Eds), 'Advances in Electrochemical Science and Engineering', Vol. 5, (Wiley-VCH, Weinheim, 1997), p. 195.

    Google Scholar 

  2. X. Gang, Li Qingfeng, H.A. Hjuler and N.J. Bjerrum, J. Electrochem Soc. 142 (1995) 2890.

    Google Scholar 

  3. S. Gottesfeld and J. Pafford, J. Electrochem. Soc. 135 (1998) 2651.

    Google Scholar 

  4. J.C. Amphlett, R.F. Mann and B.A. Peppley, Int. J. Hydrogen Energy 21 (1996) 673.

    Google Scholar 

  5. M.P. Hogarth and G.A. Hards, Platinum Metal Rev. 40 (1996) 150.

    Google Scholar 

  6. J.S. Wainright, J-T. Wang, D. Weng, R.F. Savinell and M. Litt, J. Electrochem. Soc. 142 (1995) L121.

    Google Scholar 

  7. X. Glipa, M.E. Haddad, D.J. Jones and J. Roziére, Solid State Ionics 97 (1997) 323.

    Google Scholar 

  8. J-T. Wang, S. Wasmus and R.F. Savinell, J. Electrochem. Soc. 143 (1996) 1233.

    Google Scholar 

  9. S.R. Samms, S. Wasmus and R.F. Savinell, J. Electrochem. Soc. 143 (1996) 1225.

    Google Scholar 

  10. D. Weng, J.S. Wainright, U. Landau and R.F. Savinell, J. Electrochem. Soc. 143 (1996) 1260.

    Google Scholar 

  11. S.K. Zecevic, J.S. Wainright, M.H. Litt, S. Lj. Gojkovic and R.F. Savinell, J. Electrochem. Soc. 144 (1997) 2973.

    Google Scholar 

  12. Li Qingfeng H.A. Hjuler and N.J. Bjerrum, Electrochim. Acta 45 (2000) 4219.

    Google Scholar 

  13. J-T. Wang, R.F. Savinell, J. Wainright, M. Litt and H. Yu, Electrochim. Acta 41 (1996) 193.

    Google Scholar 

  14. J-T. Wang, J.S. Wainright, R.F. Savinell and M. Litt, J. Appl. Electrochem. 26 (1996) 751.

    Google Scholar 

  15. J-T. Wang, W.F. Lin, M. Weber, S. Wasmus and R.F. Savinell, Electrochim. Acta 43 (1998) 3821.

    Google Scholar 

  16. M. Weber, J-T. Wang, S. Wasmus and R.F. Savinell, J. Electrochem. Soc. 143 (1996) L158.

    Google Scholar 

  17. R. Bouchet, E. Siebert and G. Vitter, J. Electrochem. Soc. 144 (1997) L95.

    Google Scholar 

  18. E. Fekete, Z. Peredy, E. Földes, F.E. Karasz and B. Puánszky, Polymer Bull. 39 (1997) 93.

    Google Scholar 

  19. T.A. Zawodzinski, Jr., T.E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio and S. Gottesfeld, J. Electrochem. Soc. 140 (1993) 1981.

    Google Scholar 

  20. T.A. Zawodzinski, Jr. C. Derouin, S. Radzinski, R.J. Sherman, V. T. Smith, T. E. Springer and S. Gottesfeld, J. Electrochem. Soc. 140 (1993) 1041.

    Google Scholar 

  21. J.T. Hinatsu, M. Mizuhata and H. Takenaka, J. Electrochem. Soc. 141 (1994) 1493.

    Google Scholar 

  22. K. Broka and P. Ekdunge, J. Appl. Electrochem. 27 (1997) 117.

    Google Scholar 

  23. T-S. Chung, Rev. Macromol. Chem. Phys. C37 (1997) 277.

    Google Scholar 

  24. J.J. Fontanella, M.C. Wintersgill, J.S. Wainright, R.F. Savinell and M. Litt, Electrochim. Acta 43 (1998) 1289.

    Google Scholar 

  25. R. Bouchet and E. Siebert, Solid State Ionics 118 (1999) 287.

    Google Scholar 

  26. T.F. Fuller and J. Newman, J. Electrochem. Soc. 139 (1992) 1332.

    Google Scholar 

  27. T.A. Zawodzinski, J. Davey, J. Valerio and S. Gottesfeld, Electrochim. Acta 40 (1995) 297.

    Google Scholar 

  28. X. Ren, W. Henderson and S. Gottesfeld, J. Electrochem. Soc. 144 (1997) L267.

    Google Scholar 

  29. G. Xie and T. Okada, J. Electrochem. Soc. 142 (1995) 3057.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qingfeng, L., Hjuler, H. & Bjerrum, N. Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications. Journal of Applied Electrochemistry 31, 773–779 (2001). https://doi.org/10.1023/A:1017558523354

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017558523354

Navigation