Skip to main content
Log in

Identification and characterization of satellite III subfamilies to the acrocentric chromosomes

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The centromeres and the short arms of the five pairs of acrocentric chromosomes in humans are composed of tandemly ordered repetitive DNA. Previous studies have suggested that the exchanges between acrocentric chromosomes have resulted in concerted evolution of different DNA sequences in their short arms. The acrocentric chromosomes are clinically relevant since they are involved in Robertsonian translocation formation and non-disjunction resulting in aneuploidy. Here we have identified seven new satellite III repetitive DNA subfamilies, determined their nucleotide sequences and established their chromosomal distributions on the short arms of the acrocentric chromosomes. Knowledge of these related sequences may help to elucidate the molecular basis of Robertsonian translocation formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnheim N (1983) Concerted evolution of multigene families. In:Nei M, Koehn RK, eds. Evolution of Genes and Proteins. Sunderland: Sinauer Associates Inc, pp 38–61.

    Google Scholar 

  • Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E (1980) Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc Natl Acad Sci USA 77: 7323–7327.

    Google Scholar 

  • Aubry M, Marineau C, Zhang FR et al. (1992) Cloning of six new genes with zinc finger motifs mapping to short and long arms of human acrocentric chromosome 22 (p and q11.2). Genomics 13: 641–648.

    Google Scholar 

  • Choo KH, Vissel B, Brown R, Filby RG, Earle E (1988) Homologous alpha satellite sequences on human acrocentric chromosomes with selectivity for chromosomes 13, 14 and 21: implications for recombination between nonhomologues and Robertsonian translocations. Nucleic Acids Res 16: 1273–1284.

    Google Scholar 

  • Choo KH, Earle E, McQuillan C (1990) A homologous sub-family of satellite III DNA on human chromosomes 14 and 22. Nucleic Acids Res 18: 5641–5648.

    Google Scholar 

  • Choo KH, Earle E, Vissel B, Kalitsis P (1992) A chromosome 14–specific human satellite III DNA subfamily that shows variable presence on different chromosomes 14. Am J Hum Genet 50: 706–716.

    Google Scholar 

  • Collins FS, Patrinos A, Jordan E, Chakravarti A, Gesteland R, Walters L (1998) New goals for the U.S. Human Genome Project: 1998–2003. Science 282: 682–689.

    Google Scholar 

  • Cooper KF, Fisher RB, Tyler-Smith C (1993) Structure of the sequences adjacent to the centromeric alphoid satellite DNA array on the human Y chromosome. J Mol Biol 230: 787–799.

    Google Scholar 

  • Dale S, Earle E, Voullaire L, Rogers J, Choo KH (1989) Centromeric alpha satellite DNA amplification and translocation in an unusually large chromosome 14p+ variant. Hum Genet 82: 154–158.

    Google Scholar 

  • Dernburg AF, Sedat JW, Hawley RS (1996) Direct evidence of role for heterochromatin in meiotic chromosome segregation. Cell 86: 135–146.

    Google Scholar 

  • Dover GA (1989) Linkage disequilibrium and molecular drive in the rDNA gene family. Genetics 122: 249–252.

    Google Scholar 

  • Dover GA, Strachan T, Coen ES, Brown SD (1982) Molecular drive. Science 218: 1069.

    Google Scholar 

  • Earle E, Dale S, Choo KH (1989) Amplification of satellite III DNA in an unusually large chromosome 14p+ variant. Hum Genet 82: 18–190.

    Google Scholar 

  • Earle E, Shaffer LG, Kalitsis P, McQuillan C, Dale S, Choo KH (1992) Identification of DNA sequences £anking the breakpoint of human t(14q21q) Robertsonian translocations. Am J Hum Genet 50: 71–724.

    Google Scholar 

  • Geurts van Kessel AH, den Boer WC, van Agthoven AJ, Hagemeijer A (1981) Decreased tumorigenicity of rodent cells after fusion with leukocytes from normal and leukemic donors. Somatic Cell Genet 7: 64–656.

    Google Scholar 

  • Gosden JR, Mitchell AR, Buckland RA, Clayton RP, Evans HJ (1975) The location of four human satellite DNAs on human chromosomes. Exp Cell Res 92: 14–158.

    Google Scholar 

  • Gosden JR, Lawrie SS, Gosden CM ( 1981) Satellite DNA sequences in the human acrocentric chromosomes: information from translocations and heteromorphisms. Am J Hum Genet 33: 24–251.

    Google Scholar 

  • Greig GM, Willard HF (1992) Beta satellite DNA: characterization and localization of two subfamilies from the distal and proximal short arms of the human acrocentric chromosomes. Genomics 12: 57–580.

    Google Scholar 

  • Haaf T, Warburton PE, Willard HF (1992) Integration of human alpha-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation. Cell 70: 68–696.

    Google Scholar 

  • Hamerton JL, Canning N, Ray M, Smith S (1975) A cytogenetic survey of 14,069 newborn infants. Incidence of chromosome abnormalities. Clin Genet 8: 22–243.

    Google Scholar 

  • Han JY, Choo KH, Shaffer LG (1994) Molecular cytogenetic characterization of 17 rob(13q14q) Robertsonian translocations by FISH, narrowing the region containing the breakpoints. Am J Hum Genet 55: 96–967.

    Google Scholar 

  • Harding RM, Boyce AJ, Clegg JB (1992) The evolution of tandemly repetitive DNA: recombination rules. Genetics 132: 84–859.

    Google Scholar 

  • Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 15: 34–355.

    Google Scholar 

  • Hawley RS, Irick H, Zitron AE et al. (1992) There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology. Dev Genet 13: 44–467.

    Google Scholar 

  • Hecht F, Kimberling WJ (1971) Patterns of D chromosome involvement in human (DqDq) and (DqGq) Robertsonian rearrangements. Am J Hum Genet 23: 36–367.

    Google Scholar 

  • Heisterkamp N, Groffen J, Stephenson JR et al. (1982) Chromosomal localization of human cellular homologues of two viral oncogenes. Nature 299: 74–749.

    Google Scholar 

  • Henderson AS, Warburton D, Atwood KC (1972) Location of ribosomal DNA in the human chromosome complement. Proc Natl Acad Sci USA 69: 339–3398.

    Google Scholar 

  • Higgins MJ, Wang HS, Shtromas I et al. (1985) Organization of a repetitive human 1.8 kb KpnI sequence localized in the heterochromatin of chromosome 15. Chromosoma 93: 7–86.

    Google Scholar 

  • Hirai H, Taguchi T, Godwin AK (1999) Genomic differen-tiation of 18S ribosomal DNA and beta-satellite DNA in the hominoid and its evolutionary aspects. Chromosome Res 7: 53–540.

    Google Scholar 

  • Hobart MJ, Rabbitts TH, Goodfellow PN et al. (1981) Immunoglobulin heavy chain genes in humans are located on chromosome. Ann Hum Genet 45: 33–335.

    Google Scholar 

  • Imai HT, Maruyama T, Gojobori T, Inoue Y, Crozier RH (1986) Theoretical bases for karyotype evolution. 1. The minimum interaction hypothesis. Am Nat 128: 90–920.

    Google Scholar 

  • Jackson MS, Mole SE, Ponder BA (1992) Characterization of a boundary between satellite III and alphoid sequences on human chromosome 10. Nucleic Acids Res 20: 478–4787.

    Google Scholar 

  • Jackson MS, Rocchi M, Thompson G et al. (1999) Sequences £anking the centromere of human chromosome 10 are a complex patchwork of arm-specific sequences, stable duplications and unstable sequences with homologies to telomeric and other centromeric locations. Hum Mol Genet 8: 20–215.

    Google Scholar 

  • Jantsch M, Hamilton B, Mayr B, Schweizer D (1990) Meiotic chromosome behavior re£ects levels of sequence divergence in sus scrofa domestica satellite III DNA. Chromosoma 99: 33–335.

    Google Scholar 

  • John B, Miklos GLG (1988) The Eukaryote Genome in Development and Evolution. London: Allen and Unwin pp. 17–182.

    Google Scholar 

  • Jones KW, Corneo G (1971) Location of satellite and homo-geneous DNA sequences on human chromosomes. Nat New Biol 233: 26–271.

    Google Scholar 

  • Jorgensen AL, Bostock CJ, Bak AL (1987) Homologous sub-families of human alphoid repetitive DNA on different nucleolus organizing chromosome. Proc Natl Acad Sci USA 84: 107–1079.

    Google Scholar 

  • Jorgensen AL, Kolvraa S, Jones C, Bak AL (1988) A subfamily of alphoid repetitive DNA shared by the NOR-bearing human chromosomes 14 and 22. Genomics 3: 10–109.

    Google Scholar 

  • Jorgensen AL, Laursen HB, Jones C, Bak AL (1992) Evolutionarily different alphoid repeat DNA on homologous chromosomes in human and chimpanzee. Proc Natl Acad Sci USA 89: 331–3314.

    Google Scholar 

  • Jurka J, Smith T (1988) A fundamental division in the Alu family of repeated sequences. Proc Natl Acad Sci USA 85: 477–4778.

    Google Scholar 

  • Kalitsis P, Earle E, Vissel B, Shaffer LG, Choo KH (1993) A chromosome 13–specific human satellite I DNA subfamily with minor presence on chromosome 21: further studies on Robertsonian translocations. Genomics 16: 10–112.

    Google Scholar 

  • Karpen GH, Le MH, Le H (1996) Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science 273: 11–122.

    Google Scholar 

  • Kurnit DM, Neve RL, Morton CC et al. (1984) Recent evol-ution of DNA sequence homology in the pericentromeric regions of human acrocentric chromosomes. Cytogenet Cell Genet 38: 9–105.

    Google Scholar 

  • Lai EC, Kao FT, Law ML, Woo SL (1983) Assignment of the alpha 1–antitrypsin gene and a sequence-related gene to 232 R. Bandyopadhyay et al. human chromosome 14 by molecular hybridization. Am J Hum Genet 35: 38–392.

    Google Scholar 

  • Maeda N, Smithies O (1986) The evolution of multigene families: human haptoglobin genes. Ann Rev Genet 20: 8–108.

    Google Scholar 

  • Mohandas T, Sparkes RS, Passage MB, Sparkes MC, Miles JH, Kaback MM (1980) Regional mapping of ADA and ITP on human chromosome 20: cytogenetic and somatic cell studies in an X/20 translocation. Cytogenet Cell Genet 26: 2–35.

    Google Scholar 

  • Ohno S, Trujillo JM, Kaplan WD, Kinosita R (1961) Nucleolus-organizer in the causation of chromosomal abnormalities. Lancet 2: 12–126.

    Google Scholar 

  • Page SL, Shin JC, Han JY, Choo KH, Shaffer LG (1996) Breakpoint diversity illustrates distinct mechanisms for Robertsonian translocation formation. Hum Mol Genet 5: 127–1288.

    Google Scholar 

  • Prades C, Laurent AM, Puechberty J, Yurov Y, Roizes G (1996) SINE and LINE within human centromeres. J Mol Evol 42: 3–43.

    Google Scholar 

  • Prosser J, Frommer M, Paul C, Vincent PC (1986) Sequence relationships of three human satellite DNAs. JMol Biol 187: 14–155.

    Google Scholar 

  • Rautenstrauss B, Fuchs C, Liehr T, Grehl H, Murakami T, Lupski JR (1997) Visualization of the CMT1A duplication and HNPP deletion by FISH on stretched chromosome fibers. J Peripher Nerv Syst 2: 31–322.

    Google Scholar 

  • Rowley JD, Pergament E (1969) Possible non random selection of D group chromosomes involved in centric-fusion translocations. Ann Genet 12: 17–183.

    Google Scholar 

  • Schmid CW (1996) Alu: structure, origin, evolution, significance, and function of one-tenth of human DNA. Prog Nucleic Acid Res Mol Biol 53: 28–319.

    Google Scholar 

  • Schmid M, Grunert D, Haaf T, Engel W (1983) A direct demonstration of somatically paired heterochromatin of human chromosomes. Cytogenet Cell Genet 36: 55–561.

    Google Scholar 

  • Shiels C, Coutelle C, Huxley C (1997) Contiguous arrays of satellites 1, 3, and b form a 1.5–Mb domain on chromosome 22p. Genomics 44: 3–44.

    Google Scholar 

  • Slate DL, Shulman L, Lawrence JB, Revel M, Ruddle FH (1978) Presence of human chromosome 21 alone is sufficient for hybrid cell sensitivity to human interferon. J Virol 25: 31–325.

    Google Scholar 

  • Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191: 52–535.

    Google Scholar 

  • Suzuki H, Kurihara T, Kanehisa T, Moriwaki K (1990) Vari-ation of the distribution of silver-staining nucleolar organizer regions on the chromosome of wild mouse, Mus musculus. Mol Evol 7: 27–282.

    Google Scholar 

  • Tagarro I, Fernandez-Peralta AM, Gonzalez-Aguilera JJ (1994a) Chromosomal localization of human satellites 2 and 3 by a FISH method using oligonucleotides as probes. Hum Genet 93: 38–388.

    Google Scholar 

  • Tagarro I, Wiegant J, Raap AK, Gonzalez-Aguilera JJ, Fernandez-Peralta AM (1994b) Assignment of human satel-lite 1 DNA as revealed by £uorescent in-situ hybridization with oligonucleotides. Hum Genet 93: 12–128.

    Google Scholar 

  • Tartof KD, Dawid IG (1976) Similarities and differences in the structure of X and Y chromosome rRNA genes of Drosophila. Nature 263: 2–30.

    Google Scholar 

  • Taylor SS, Larin Z, Tyler-Smith C (1996) Analysis of extrachromosomal structures containing human centromeric alphoid satellite DNA sequence in mouse cells. Chromosoma 105: 7–81.

    Google Scholar 

  • Trowell HE, Nagy A, Vissel B, Choo KH (1993) Long-range analyses of the centromeric regions of human chromosomes 13, 14 and 21: identification of a narrow domain containing two key centromeric DNA elements. Hum Mol Genet 2: 163–1649.

    Google Scholar 

  • Tuck-Muller CM, Bordson BL, Varela M, Bennett JW (1984) NOR associations with heterochromatin. Cytogenet Cell Genet 38: 16–170.

    Google Scholar 

  • Vissel B, Nagy A, Choo KH (1992) A satellite III sequence shared by human chromosomes 13, 14, and 21 that is contiguous with alpha satellite DNA. Cytogenet Cell Genet 61: 8–86.

    Google Scholar 

  • Wang SY, Cruts M, Del-Favero J et al. (1999) A high-resolution physical map of human chromosome 21p using yeast artificial chromosomes. Genome Res 9: 105–1073.

    Google Scholar 

  • Waye JS, Willard HF (1989) Human beta satellite DNA: genomic organization and sequence definition of a class of highly repetitive tandem DNA. Proc Natl Acad Sci USA 86: 625–6254.

    Google Scholar 

  • Worton RG, Sutherland J, Sylvester JE et al. (1988) Human ribosomal RNA genes: orientation of the tandem array and conservation of the 50 end. Science 239: 6–68.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, R., McQuillan, C., Page, S.L. et al. Identification and characterization of satellite III subfamilies to the acrocentric chromosomes. Chromosome Res 9, 223–233 (2001). https://doi.org/10.1023/A:1016648404388

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016648404388

Navigation