Skip to main content
Log in

Does Fluid Flow Across the Intestinal Mucosa Affect Quantitative Oral Drug Absorption? Is It Time for a Reevaluation?

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Hydrophilic and charged solutes have a lower membrane permeability which is due to a lower partition into the lipid membrane (low solubility in the membrane phase) and/or a slower transcellular diffusion coefficient. They are therefore anticipated to be absorbed through the paracellular route, which is a consequence of diffusion and a convective volume flow through the water-filled intercellular space.

Methods. Two approaches have been used to investigate the mechanisms underlying the paracellular drug transport across the intestinal mucosa: (a) including water transport by exposing the apical side of the epithelium with a hypotonic solution, and (b) stimulated paracellular transport by widening of tight junction and increased water absorption as a consequence of the sodium-coupled transport of nutrients.

Results. Among the first studies that recognized this fluid flux dependent transmucosal transport of drugs, was one published by Oschenfahrt & Winne in 1973 and the one by Kitazawa et al. in 1975. During the last two decades the importance of this paracellular route for drug delivery have been explored in vitro and in situ.

Conclusions. The limits concerning molecular weight, shape, ionization and the effect of physiological stimulants, such as luminal concentrations of nutrients, osmolality and motility, are currently under investigation. However, recently published in vivo human data by ourselves and others indicate that the promising results obtained in vitro and in situ for various hydrophilic compounds might not be valid in quantitative aspects in humans, especially not for drugs with a molecular weight over 200.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. N.H. Nellans. (B) Mechanisms of peptide and protein absorption. (1) Paracellular intestinal transport: modulation of transport. Adv. Drug Delivery; 7:339–64 (1991).

    Google Scholar 

  2. L. Narawane and V. H. L. Lee. Absorption barriers,. In A. G. de Boer (ed), Drug Absorption Enhancement, Concepts, Possibilities, Limitations and Trends, Harwood Academic Publishers, Chur, Switzerland, 1994, pp. 1–66.

    Google Scholar 

  3. A.B.J. Noach, M. A. Hurni, A. G. de Boer and D.D. Brimer. Absorption barriers, In A. G. de Boet (ed), Drug Absorption Enhancement, Concepts, Possibilities, Limitations and Trends, Harwood Academic Publishers, Chur, Switzerland, 1994, pp. 291–324.

    Google Scholar 

  4. B. Andersson and H.H. Ussing. Solvent drag on nonelectrolytes during osmotic flow through isolated toad skin and its response to antidiuretic hormone. Acta Physiol. Scand. 39, 228–239 (1957).

    Google Scholar 

  5. D. C. Taylor. Sites and mechanisms of intestinal drug absorption. Pharm. Int. 6, 179–183 (1986).

    Google Scholar 

  6. D. C. Taylor, R. Pownall and W. Burke. The absorption of β-adrenoceptor antagonists in rat in situ small intestine; the effect of lipophilicity J. Pharm. Pharmacol. 37, 280–283 (1985).

    Google Scholar 

  7. P. Artursson and C. Magnusson. Epithelial transport of drugs in cell culture. II: Effect of extracellular calcium concentration on the paracellular transport of drugs of different lipophilicities across monolayers of intestinal epithelial (Caco-2) cells. J. Pharm. Sci. 79, 595–600 (1990).

    Google Scholar 

  8. J.R. Pappenheimer and K.Z. Reiss. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J. Membr. Biol. 100, 123–136 (1987).

    Google Scholar 

  9. J.L. Madara and J.R. Pappenheimer. Structural Basis for physiological regulation of paracellular pathways in intestinal epithelia. J. Membrane Biol. 100, 149–164 (1987).

    Google Scholar 

  10. R.A. Frizzell and S.G. Schultz. Ionic conductance of extracellular shunt pathway in rabbit ileum. J. Gen. Physiol. 59;318–346 (1972).

    Google Scholar 

  11. H-H. Lu, J. Thomas J and D. Fleisher. Influence of D-glucoseinduced water absorption on rat jejunal uptake of two passively absorbed drugs. J. Pharm. Sci. 81:21–5 (1992).

    Google Scholar 

  12. H-H. Lu, J. Thomas, J. Tukker and D. Fleisher. Intestinal water and solute absorption studies: Comparison of in situ perfusion with chronic isolated loops in rats. Pharm. Res. 9:894–900 (1992).

    Google Scholar 

  13. H. Ochsenfahrt and D. Winne. The contribution of solvent drag to the intestinal absorption of tritiated water and urea from the jejunum of the rat. N-Schmied. Arch. Pharmacol. 279:133–152 (1973).

    Google Scholar 

  14. H. Ochsenfahrt and D. Winne. The contribution of solvent drag to the intestinal absorption of the basic drugs amidopyrine and antipyrine from the jejunum of the rat. N-Schmied. Arch. Pharmacol. 281:175–196 (1974).

    Google Scholar 

  15. H. Ochsenfahrt and D. Winne. The contribution of solvent drag to the intestinal absorption of the acidic drugs benzoic acid and salicylic acid from the jejunum of the rat. N-Schmied. Arch. Pharmacol. 281:197–217 (1974).

    Google Scholar 

  16. S. Kitazawa, H. Ito and H. Sezaki. Transmucosal fluid movement and its effect on drug absorption. Chem. Pharm. Bull. 23:1856–1865 (1975).

    Google Scholar 

  17. S. Kitazawa, H. Ito, I. Johno, T. Takahashi and H. Takenaka. Generality in effects of transmucosal fluid movement and glucose on drug absorption from the rat small intestine. Chem. Pharm. Bull. 26:915–924 (1978).

    Google Scholar 

  18. A. Karino, M. Hayashi, S. Awazu and M. Hanano. Solvent drag effect in drug intestinal absorption. II. Studies on drug absorption clearance and water influx. J. Pharm. Dyn. 5:670–677 (1982).

    Google Scholar 

  19. T. Hirasawa, T. Muraoka, A. Karino, M. Hayashi and S. Awazu. Solvent drag in jejunal absorption of salicylic acid and antipyrine obtained by in situ single-pass perfusion method in rat. J. Pharm. Dyn. 7:246–253 (1984).

    Google Scholar 

  20. P. Krugliak, D. Hollander, T.Y. Ma, D. Tran, V.D. Dadufalza, K.D. Katz and K. Le. Mechanisms of polyethylene glycol 400 permeability of perfused rat intestine. Gastroenterol. 97:1164–1170 (1989).

    Google Scholar 

  21. D. Fleisher, N. Sheth, H. Griffin, M. Mcfadden and G. Aspachar. Nutrient influences on rat intestinal phenytoin uptake. Pharm. Res. 6, 332–337 (1989).

    Google Scholar 

  22. N. See and P. Bass. Nutrient-induced changes in the permeability of the rat jejunal mucosa. J. Pharm. Sci. 82:721–4 (1993).

    Google Scholar 

  23. I. Johno, K. Kawakatsu, H. Kuwata and S. Kitazawa. Segmental difference in transmucosal fluid movement and its effect on gastrointestinal drug absorption in rabbits. Int. J. Pharm. 25;255–263 (1985).

    Google Scholar 

  24. O. Kedem and A. Katchalsky. Thermodynamics of flow processes in biological systems. Biophys. J., Suppl. 53–78 (1958).

  25. H. Lennernäs, D. Nilsson, S-M. Aquilonius, Ö. Ahrenstedt, L. Knutsson and L. Paalzow. The effect of L-leucine on the absorption of levodopa, studied by regional jejunual perfusion in man. Br. J. Clin. Pharmacol. 35, 243–250 (1993).

    Google Scholar 

  26. H. Lennernäs, Ö. Ahrenstedt and A-L. Ungell. Intestinal drug absorption during induced net water absorption in man: A mechanistic study using antipyrine, atenolol and enalaprilat. Br. J. Clin. Pharmacol. 37, 589–596, (1994).

    Google Scholar 

  27. D. Nilsson, U. Fagerholm and H. Lennernäs. The influence of net water absorption on the permeability of antipyrine and levodopa in the human jejunum. Pharm. Res., 11, 1541–1545 (1994).

    Google Scholar 

  28. U. Fagerholm, L. Borgström, Ö. Ahrenstedt and H. Lennernäs. The lack of effect of induced net fluid absorption on the in vivo permeability of terbutaline in the human jejunum. J. Drug Targeting, in press, (1995).

  29. K.D. Fine, C.A. Santa Ana, J. L. Porter and J.S. Fordtran. Effect of D-glucose on intestinal permeability and its passive absorption in human small intestine in vivo. Gastroenterol., 105;1117–1125 (1993).

    Google Scholar 

  30. K.H. Soergel. Showdown at the tight junction. Gastroenterol., 105:1247–1250 (1993).

    Google Scholar 

  31. B. G. Munck and S. N. Rasmussen. Paracellular permeability of extracellular space markers across rat jejunum in vitro. Indication of a transepithelial fluid circuit. J. Physiol., 271;473–488 (1977).

    Google Scholar 

  32. W.D. Stein. Transport and Diffusion across Cell Membranes. Academic Press, Inc. Harcourt Brace Jovanovich, Publishers, New York, 1986. Press, Cambridge, 1984., pp. 8–112.

    Google Scholar 

  33. S. Tripathi and E. L. Boulpaep. Mechanisms of water transport by epithelial cells. Quarterely J. Exp. Physiol. 74; 385–417 (1989).

    Google Scholar 

  34. C. H. van Os., P. M. T. Deen and J. A. Dempster. Aquaporins: water selective channels in biological membranes. Molecular structure and tissue distribution. Biochimica et Biophysica Acta 1197;291–309 (1994).

    Google Scholar 

  35. G. I. Sandle, M.J., Keir and C. O. Record. Inter-relationships between the absorptions of hydrocortisone, sodium, water and actively transported organic solutes in the human jejunum. Eur. J. Clin. Pharmacol. 23:177–182 (1982).

    Google Scholar 

  36. K.D. Fine, C. A. Santa Ana, J.L. Porter and J.S. Fordtran. Mechanism by which glucose stimulates the passive absorption of small solutes by the human jejunum in vivo. Gastroenterol., 107;389–395 (1994).

    Google Scholar 

  37. J.L. Madara and J. S. Trier. The functional morphology of the mucosa of the small intestine. Physiology of the Gastrointestinal Tract, ed Johnson L.R., Raven Press, New York, 1994, pp 1577–1622.

    Google Scholar 

  38. H. Lennernäs, Ö. Ahrenstedt, R. Hällgren, L. Knutsson, M. Ryde, L. Paalzow Regional jejunal perfusion, a new in vivo approach to study oral drug absorption in man. Pharm. Res. 9;1243–1251 (1992).

    Google Scholar 

  39. K. Atisook and J. L. Madara. An oligopeptide permeates intestinal tight junctions at glucose-elicited dilatations. Gastroenterol. 100; 719–724 (1991).

    Google Scholar 

  40. P. Claude. Morphological factors influencing transepithelial permeability: a model for the resistance of the Zonula Occludens. J. Membrane Biol. 39;219–232 (1978).

    Google Scholar 

  41. J. A. Bastidas, M. J. Zinner, J. A. Bastidas, M. S. Orlandle and J. L. Yeo. Influence of meal composition on canine jejunal water and electrolyter absorption. Gastroenterology. 102;486–492 (1992).

    Google Scholar 

  42. M. D. Donovan, G. L. Flynn and G.L. Amidon. Absorption of polyethylene glycols 600 through 2000: the molecular weight dependence of gastrointestinal and nasal absorption. Pharm. Res. 7, 863–868 (1990).

    Google Scholar 

  43. V. S. Chadwick, S. F. Phillips and A. F. Hofmann. Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 400). II. Application to normal and abnormal permeability states in man and animals. Gastroenterology. 73, 247–251 (1977).

    Google Scholar 

  44. Y.C. Martin. A practitioner's perspective of the role of quantitative structure-activity analysis in medicinal chemistry. J. Med. Chem. 24, 229–237 (1981).

    Google Scholar 

  45. A. C. Chakrabarti. Permeability of membranes to amino acids and modified amino acids: mechanisms involved in translocation. Amino Acids, 6; 213–229 (1994).

    Google Scholar 

  46. A. Walter and J. Gutknecht. Permeability of small nonelectrolytes through lipid bilayer membranes. J. Membrane Biol. 90, 207–217 (1986).

    Google Scholar 

  47. E. Overton. Ueber die allgemeinen osmotischen eigenschaften der zelle, ihre vermutlichen ursachen und ihre bedeutung fur die physiologie. Vierteljahrsschr. Naturforsch. Ges. Zuerich., 44;88–135 (1899).

    Google Scholar 

  48. R. Collander. The permeability of plant protoplasts to small molecules. Physiol. Plant. 2;300–311 (1949).

    Google Scholar 

  49. U. Fagerholm and H. Lennernäs. Experimental Estimation of the Effective Unstirred Water Layer Thickness in the Human Jejunum, and its Importance in Oral Drug Absorption. Eur. J. Pharm. Sci. in press (1995).

  50. M. Cereijido, A. Ponce and L. González-Mariscal. Tight junctions and apical/basolateral polarity. J. Membrane Biol. 110;1–9 (1989).

    Google Scholar 

  51. M. Jodal and O. Lundgren. Countercurrent mechanisms in the mammalian gastrointestinal tract. Gastroenterol. 91;225–241 (1986).

    Google Scholar 

  52. G. J. Anthone, B. H. Wang, M. J. Zinner, M. S. Orandle and C. J. Yeo. Meal-induced jejunal absorption requires intact neural pathways. Am. J. Surgery, 163;150–156 (1992).

    Google Scholar 

  53. C.J. Yeo, A. Bastidas, R.E. Schmieg and M. J. Zinner. Mealstimulated absorption of water and electrolytes in canine jejunum. Am. J. Physiol. 259;G402–G409 (1990).

    Google Scholar 

  54. J. B. Hunt, R. J. Elliott and M. J. G. Farthing. Comparison of rat and human intestinal perfusion models for assessing efficacy of oral rehydration solutions. Aliment. Pharmacol. Therap., 5;49–59 (1991).

    Google Scholar 

  55. D. C. Sadoiwski and J. B. Meddings. Luminal nutrients alter tight-junction permeability in the rat jejunum: an in vivo perfusion model. Can. J. Physiol. Pharmacol., 71; 835–839 (1993).

    Google Scholar 

  56. T. Y. Ma, D. Hollander, R. A. Erickson, H. Truong, H. Nguyen and P. Krugliak. Mechanism of colonic permeation of inulin: Is rat colon more permeable than small intestine? Gastroenterol., 108;12–20 (1995).

    Google Scholar 

  57. A.B.J. Noach, M. Sakai, M. C. M. Blom-Roosemalen, H. R. de Jonge, A. G. de Boer and D.D. Breimer. Effect of anistotonic conditions on the transport of hydrophilic model compounds across monolayers of human colonic cell lines. J. Pharmacol. Exp. Ther., 270; 1373–1380 (1994).

    Google Scholar 

  58. J. Karlsson, Drug absorption in cell culture models of the intestinal epithelium, thesis, the university of Uppsala, Sweden, (1995).

  59. M. Peeters, M. Hiele, Y. Ghoos, V. Huysmans, K. Geboes, G. Vantrappen and P. Rutgeerts. Test conditions greatly influence permeation of water soluble molecules through the intestinal mucosa: need for standardisation. Gut., 35, 1404–1408 (1994).

    Google Scholar 

  60. C. V. Gisolfi, R. W. Summers, H. P: Schedl and T. L. Bleiler. Intestinal water absorption from select carbohydrate solutions in humans. J. Appl. Physiol. 73;2142–2150 (1992).

    Google Scholar 

  61. T. Gramatté, E. El Desoky and U. Klotz. Site-dependent small intestinal absorption of ranitidine. Eur. J. Clin. Pharmacol. 46; 253–259 (1994).

    Google Scholar 

  62. R. P. Ferraris, S. Yasharpour, K. C. Kent Lloyd, R. Mirzayan and J. D. Diamond. Luminal glucose concentrations in the gut under normal conditions. Am. J. Physiol. 259; G822–G837 (1990).

    Google Scholar 

  63. H. Bröndsted, H. Mörck and L. Hovgaard. Drug delivery studies in Caco-2 monolayers. III. Intestinal transport of various vasopressin analogues in the presence of lysophosphatidylcholine. Int. J. Pharm. 114, 151–157 (1995).

    Google Scholar 

  64. H. Lennernäs. Gastrointestinal absorption mechanisms: A comparison between animal and human models. Eur J. Pharm. Sci. 2, 39–43 (1994).

    Google Scholar 

  65. G. Holzheimer and D. Winne. Influence of distension on absorption and villous structure in rat jejunum. Am J. Physiol., 256, G188–G197 (1989).

    Google Scholar 

  66. E.B. Chang and M.C. Rao. Intestinal water and electrolyte transport: mechanisms of physiological and adaptive responses. Physiology of the Gastrointestinal Tract, ed Johnson L.R., Raven Press, New York, 1994, pp 2027–2081.

    Google Scholar 

  67. H. Lennernäs, U. Fagerholm, Y. Raab, B. Gerdin and R. Hällgren. Regional rectal perfusion, a new in vivo approach to study rectal drug absorption in man. Pharm. Res., 12, 426–432 (1994).

    Google Scholar 

  68. S.A. Riley, M. Kim, F. Sutcliffe, M. Kapas, M. Rowland and L.A. Turnberg. Effects of a non-absorbable osmotic load on drug absorption in healthy volunteers. Br. J. Clin. Pharmacol. 34, 40–46 (1992).

    Google Scholar 

  69. G.L. Amidon, H. Lennernäs, V.P. Shah and J. Crison. Theoretical considerations in the correlation of in vitro drug product dissolution and in vivo bioavailability: A basis for a biopharmaceutics drug classification. Pharm. Res., 12, 413–420 (1995).

    Google Scholar 

  70. M.D. Levitt, A. Strocchi and D.G. Levitt. Human jejunal unstirred layer: evidence for extremely efficient luminal stirring. Am. J. Physiol., 262, G593–6 (1992).

    Google Scholar 

  71. J.M. Diamond. Evolutionary design of intestinal nutrient absorption: Enough but not too much. News in Physiol. Sci., 6: 92–6 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lennernäs, H. Does Fluid Flow Across the Intestinal Mucosa Affect Quantitative Oral Drug Absorption? Is It Time for a Reevaluation?. Pharm Res 12, 1573–1582 (1995). https://doi.org/10.1023/A:1016220428705

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016220428705

Navigation