Skip to main content
Log in

An Urban Surface Exchange Parameterisation for Mesoscale Models

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A scheme to represent the impact of urban buildings on airflow in mesoscale atmospheric models is presented. In the scheme, the buildings are not explicitly resolved, but their effects on the grid-averaged variables are parameterised. An urban quarter is characterised by a horizontal building size, a street canyon width and a building density as a function of height. The module computes the impact of the horizontal (roof and canyon floor) and vertical (walls) surfaces on the wind speed, temperature and turbulent kinetic energy. The computation of the shortwave and longwave radiation, needed to compute the temperature of the urban surfaces, takes into account the shadowing and radiation trapping effects induced by the urban canyons. The computation of the turbulent length scales in the TKE equation is also modified to take into account the presence of the buildings.

The parameterisation is introduced into a mesoscale model and tested in a bidimensional case of a city over flat terrain. The new parameterisation is shown to be able to reproduce the most important features observed in urban areas better than the traditional approach which is based only on the modification of the roughness length, thereby retaining the Monin–Obukhov similarity theory. The new surface exchange parameterisation is furthermore shown to have a strong impact on the dispersion characteristics of air pollutants in urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arnfield, A. J. and Grimmond, C. S. B.: 1998, 'An Urban Canyon Energy Budget Model and its Application to Urban Storage Heat Flux Modelling', Energ. Buildings 27, 61–68.

    Google Scholar 

  • Ashie, Y., Vu Thanh Ca, and Asaeda, T.: 1999, 'Building Canopy Model for the Analysis of Urban Climate', J. Wind Eng. Ind. Aero. 81, 237–248.

    Google Scholar 

  • Ayotte, K. W., Finnigan, J. J., and Raupach, M. R.: 1999, 'A Second-Order Closure for Neutrally Stratified Vegetative Canopy Flows', Boundary-Layer Meteorol. 90, 189–216.

    Google Scholar 

  • Bornstein, R. D.: 1987, 'Mean Diurnal Circulation and Thermodynamic Evolution of Urban Boundary Layers', in Modelling the Urban Boundary Layer, American Meteorological Society, Boston, MA, pp. 53–94.

    Google Scholar 

  • Bornstein, R. D. and Johnson, D. S.: 1977, 'Urban-Rural Wind Velocity Differences', Atmos.Environ. 11, 597–604.

    Google Scholar 

  • Bornstein, R. D., Thunis, P., and Schayes, G.: 1993, 'Air Pollution in Coastal Urban Flows: Observations and Model Evaluation for the New York City Area', in Proceedings of the Apsis Meeting, April, Lausanne, Switzerland, pp. 29–30.

  • Bottema, M.: 1997, 'Urban Roughness Modelling in Relation to Pollutant Dispersion', Atmos. Environ. 31, 3059–3075.

    Google Scholar 

  • Bougeault, P. and Lacarrere, P.: 1989, 'Parameterisation of Orography-Induced Turbulence in a Mesobeta-Scale Model', Mon. Wea. Rev. 117, 1872–1890.

    Google Scholar 

  • Brown, M: 2000, 'Urban Parameterisations for Mesoscale Meteorological Models', in Z. Boybey (ed.), Mesoscale Atmospheric Dispersion, Wessex Press, 448 pp.

  • Brown, M. and Williams, M: 1998, 'An Urban Canopy Parameterisation for Mesoscale Meteorological Models', in AMS 2nd Urban Environment Symposium, Albuquerque, NM.

    Google Scholar 

  • Clappier, A.: 1998, 'A Correction Method for Use in Multidimensional Time-Splitting Advection Algorithms: Application to Two and Three Dimensional Transport', Mon. Wea. Rev. 126, 232–242.

    Google Scholar 

  • Clappier, A., Martilli, A., Grossi P., Thunis, P., Pasi, F., Krueger, B. C., Calpini, B., Graziani, G., and van den Bergh, H.: 2000, 'Effect of Sea Breeze on Air Pollution in the Greater Athens Area. Part 1: Numerical Simulations and Field Observations', J. Appl. Meteorol. 39, 546–562.

    Google Scholar 

  • Clappier, A., Martin, M., Chopard, B., and van den Bergh, H.: 1997, 'Unified Modelling of Meteorology and Air Pollution on Massively Parallel Computers', Swiss National Fund final report no. 21045625.25.

  • Clappier, A., Perrochet. P., Martilli, A., Muller, F., and Krueger, B. C.: 1996, 'A New Non-hydrostatic Mesoscale Model using a CVFE (Control Volume Finite Element) Discretisation Technique', in P. M. Borrell et al. (eds.), Proceedings of EUROTRAC Symposium '96, ComputationalMechanics Publications, Southampton, pp. 527–531.

    Google Scholar 

  • Clarke, J. A.: 1985, Energy Simulation in Building Design, Adam Hilger, Bristol, 362 pp.

    Google Scholar 

  • Collella, P. and Woodward, P.: 1984, 'The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations', J. Comp. Phys. 54, 174–201.

    Google Scholar 

  • Draxler, R. R.: 1986, 'Simulated and Observed Influence of the Nocturnal Urban Heat Island on the Local Wind Field', J. Appl. Meteorol. 25, 1125–1133.

    Google Scholar 

  • Duynkerke, P. G.: 1988, 'Application of the E-Epsilon Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer', J. Atmos. Sci. 45, 865–880.

    Google Scholar 

  • Feigenwinter, C., Vogt, R., and Parlow, E.: 1999, 'Vertical Structure of Selected Turbulence Characteristics above an Urban Canopy', Theor. Appl. Climatol. 62, 51–63.

    Google Scholar 

  • Grimmond, C. S. B. and Oke, T. R.: 2000, 'Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form', J. Appl. Meteorol. 38, 1262–1292.

    Google Scholar 

  • Harley, R. A., Russell, A. G., McRae, J., Cass, G. K., and Seinfeld, J. H.: 1993, 'Photochemical Air Quality Modelling of the Southern California Air Quality Study', Environ. Sci. Technol. 27, 378–388.

    Google Scholar 

  • Kastner-Klein, P., Fedorovich, E., and Rotach, M.: 2001, 'A Wind Tunnel Study of Organised and Turbulent Air Motions in Urban Street Canyons', J. Wind Eng. Ind. Aerodyn. 89, 849–861.

    Google Scholar 

  • Louis, J. F.: 1979, 'A Parametric Model of Vertical Eddies Fluxes in the Atmosphere', Boundary-Layer Meteorol. 17, 187–202.

    Google Scholar 

  • Louka, P., Belcher, S. E., and Harrison, R. G.: 2000, 'Coupling between Air Flow in Streets and the Well Developed Boundary Layer Aloft', Atmos. Environ. 34, 2613, 2621.

    Google Scholar 

  • Martilli, A.: 2001, Development of an Urban Turbulence Paramterisation for Mesoscale Atmospheric Models, Ph.D. Dissertation, Swiss Federal Institute of Technology, Lausanne, Switzerland, 192 pp.

    Google Scholar 

  • Masson, V.: 2000, 'A Physically-Based Scheme for the Urban Energy Budget in Atmospheric Models', Boundary-Layer Meteorol. 94, 357–397.

    Google Scholar 

  • Moussioupouolos, N., Sahm, P., Karatzas, K., Papalexiou, S., and Karagianidis, A.: 1997, 'Assessing the Impact of the New Athens Airport to Urban Air Quality with Contemporary Air Pollution Models', Atmos. Environ. 31, 1497–1511.

    Google Scholar 

  • Oikawa, S. and Meng, Y.: 1995, 'Turbulence Characteristics and Organised Motions in a Suburban Roughness Sublayer', Boundary-Layer Meteorol. 74, 289–312.

    Google Scholar 

  • Oke, T. R.: 1995, 'The Heat Island of the Urban Boundary Layer: Characteristics, Causes and Effects', in J. E. Cermak et al. (eds.), Wind Climate in Cities, Kluwer Academic Publishers, Dordrecht, Boston, pp. 81–107.

    Google Scholar 

  • Olesen, H. R.: 1995, 'The Model Validation Exercise at Mol: Overview of Results', Int. J. Environ. Poll. 5, 761–784.

    Google Scholar 

  • Pielke, R.: 1984, Mesoscale Meteorological Modelling, Academic Press, San Diego, 612 pp.

    Google Scholar 

  • Rafailidis, S.: 1997, 'Influence on Building Areal Density and Roof Shape on the Wind Characteristics above a Town', Boundary-Layer Meteorol. 85, 255–271.

    Google Scholar 

  • Raupach, M. R.,: 1992, 'Drag and Drag Partition on Rough Surfaces', Boundary-Layer Meteorol. 60, 375–395.

    Google Scholar 

  • Raupach, M. R. and Shaw, R. H.: 1982, 'Averaging Procedure for Flow within Vegetation Canopies', Boundary-Layer Meteorol. 22, 79–90.

    Google Scholar 

  • Raupach, M. R., Antonia, R. A., and Rajagoplan, S.: 1991, 'Rough-Wall Turbulent Boundary Layers', Appl. Mech. Rev. 44, 1–25.

    Google Scholar 

  • Rhie, C. M. and Chow, W. L.: 1983, 'Numerical Study of the Turbulent Flow as an Airfoil with Trailing Edge Separation', AIAA J. 21, 1525–1532.

    Google Scholar 

  • Rotach, M. W.: 1993, 'Turbulence Close to a Rough Urban Surface. Part 1: Reynolds Stress', Boundary-Layer Meteorol. 65, 1–28.

    Google Scholar 

  • Rotach, M.W.: 1995, 'Profiles of Turbulence Statistics in and above an Urban Street Canyon', Atmos. Environ. 29, 1473–1486.

    Google Scholar 

  • Rotach, M. W.: 1999, 'On the Influence of the Urban Roughness Sublayer on Turbulence and Dispersion', Atmos. Environ. 33, 4001–4008.

    Google Scholar 

  • Rotach, M. W.: 2001, 'Urban Scale Dispersion Modelling Using a Lagrangian Particle Dispersion Model', Boundary-Layer Meteorol. 99, 379–410.

    Google Scholar 

  • Roth, M.: 2000, 'Review of Atmospheric Turbulence over Cities', Quart. J. Roy. Meteorol. Soc. 126, 1941–1990.

    Google Scholar 

  • Sasamori, T.: 1968, 'Radiative Cooling Calculation for Application to General Circulation Experiments', J. Appl. Meteorol. 7, 721–729

    Google Scholar 

  • Schayes, G.: 1982, 'Direct Determination of Diffusivity Profiles form Synoptic Reports', Atmos. Environ. 16, 1407–1413.

    Google Scholar 

  • Schayes, G. and Grossi, P.: 1997, 'Sensitivity Analysis on Boundary Layer Height on Idealised Cities', in Proceedings of EURASAPWorkshop on the Determination of the Mixing Height, Risoe National Laboratory, Roskilde, Denmark, 1—3 October.

    Google Scholar 

  • Sievers, U.: 1990, 'Dreidimensionale Simulation in Stadtgebieten. Schriftenreihe Umweltmeteorologie Band 15', in Kommission Reinhaltung der Luft im VDI und DIN, Dusseldorf, pp. 36–43 (in German).

  • Spanton, A. M. and Williams, M. L.: 1988, 'A Comparison of the Structure of the Atmospheric Boundary Layers in Central London and a Rural/Suburban Site Using Acoustic Sounding', Atmos. Environ. 22, 211–223.

    Google Scholar 

  • Sparrow, E. M. and Cess, R. D.: 1978, Radiation Heat Transfer, Brooks/Cole Publishing Company, Belmnot, CA, 366 pp.

    Google Scholar 

  • Tremback, C. J. and Kessler, R.: 1985, 'A Surface Temperature and Moisture Parameterisation for use in Mesoscale Numerical Models', in Proceedings of 7th Conference on Numerical Weather Prediction, June 17—20, Montreal, Quebec, Canada.

  • Uno, I., Ueda, H., and Wakamatsu, S.: 1989, 'Numerical Modelling of the Nocturnal Urban Boundary Layer', Boundary-Layer Meteorol., 49, 77–98.

    Google Scholar 

  • Wilson, N. and Shaw, R.: 1977, 'A Higher Order Closure Model for Canopy Flow', J Appl. Meteorol. 16, 1197–1205.

    Google Scholar 

  • Yamada, T.: 1982, 'A Numerical Study of Turbulent Airflow in and above a Forest Canopy', J. Meteorol. Soc. Japan 60, 439–454

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martilli, A., Clappier, A. & Rotach, M.W. An Urban Surface Exchange Parameterisation for Mesoscale Models. Boundary-Layer Meteorology 104, 261–304 (2002). https://doi.org/10.1023/A:1016099921195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016099921195

Navigation