Skip to main content
Log in

Suitability of Various Noninfinity Area Under the Plasma Concentration–Time Curve (AUC) Estimates for Use in Bioequivalence Determinations: Relationship to AUC from Zero to Time Infinity (AUCO–INF)

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The influence of random error and elimination rate on estimates of the area under the curve from zero to time infinity (AUC0–INF) was determined in a simulation study using noninfinity measured AUC values (i.e., AUCTM, area to a measured common sampling time, and AUC0-LAST, area to the last measured sampling time). Further, the extent of absorption of generic danazol, baclofen, and oxazepam was determined using measured methods of estimating area under the curve in bioequivalence studies. The noninfinity AUC estimates and their 90% confidence intervals for the difference in product means were compared for each individual drug. Products chosen fulfilled one of the following three criteria: (1) a high “apparent intrasubject variability” and a half-life greater than 8 hr (danazol); (2) a low apparent intrasubject variability and a half-life less than 4 hr (baclofen); and (3) products exhibiting a low apparent intrasubject variability and a half-life greater than 8 hr (oxazepam). For the simulated data, AUCTM performed best when subjects had similar half-lives (i.e., low variability), which results in AUCTM = AUC0–LAST. On the other hand, AUC0–LAST worked best with a high fractional standard deviation (fsd) and a short elimination half-life (i.e., less than 4 hr). The noninfinity 90% confidence intervals for danazol and oxazepam were inconsistent with those observed at AUC0–INF. However, baclofen, which has a short elimination half-life, exhibited good agreement between the noninfinity and the AUC0–INF 90% confidence intervals. However, across all three drug groups, the comparison based upon the area calculated from time zero to the last quantifiable concentration, AUC0–LAST, consistently provided the best approximation of AUC0–INF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. Gibaldi and D. Perrier. In Pharmacokinetics, 2nd Ed., Marcel Dekker, New York, 1982.

    Google Scholar 

  2. F. Hatch, K. McKellop, G. Hansen, and T. MacGregor. Relative bioavailability of metaproterenol in humans utilizing a single dose, stable isotope approach. J. Pharm. Sci. 75:886–890 (1986).

    Google Scholar 

  3. M.-L. Aitio, H. Allonen, J. Kanto, and R. Mantyla. The pharmacokinetics of disopyramide and mono-N-dealkyl-disopy-ramide in humans. Int. J. Clin. Pharmacol. Ther. Toxicol. 20:219–226 (1982).

    Google Scholar 

  4. M. Kraml, D. R. Hicks, M. McKean, J. Panagides, and J. Furst. The pharmacokinetics of etodolac in serum and synovial fluid of patients with arthritis. Clin. Pharmacol. Ther. 43:571–576 (1988).

    Google Scholar 

  5. A. T. Tembo, M. R. Hallmark, E. Sakmar, H. G. Bachmann, D. J. Weidler, and J. G. Wagner. Bioavailability of prednisolone tablets. J. Pharmacokinet. Biopharm. 5:257–270 (1977).

    Google Scholar 

  6. A. B. Straughn, G. C. Wood, G. Gursharan, and M. C. Meyer. Bioavailability of seven furosemide tablets in man. Biopharm. Drug Disp. 7:113–120 (1986).

    Google Scholar 

  7. F. Sorgel, J. Hasegawa, E. T. Lin, and R. L. Williams. Oral triamterene disposition. Clin. Pharmacol. Ther. 38:306–312 (1985).

    Google Scholar 

  8. R. K. Ferguson, P. H. Vlasses, J. R. Koplin, G. I. Holmes, P. Huber, J. Demetriades, and W. B. Abrams. Relationship among timolol doses, plasma concentrations and B-adrenoceptor blocking activity. Br. J. Clin. Pharmacol. 14:719–725 (1982).

    Google Scholar 

  9. K. Onoyama, F. Nanishi, S. Okuda, Y. Oh, M. Fujishima, M. Tateno, and T. Omae. Pharmacokinetics of a new angiotensin I converting enzyme inhibitor (delapril) in patients with deteriorated kidney function and in normal control subjects. Clin. Pharmacol. Ther. 43:242–249 (1988).

    Google Scholar 

  10. E. G. Lovering, I. J. McGilveray, I. McMillan, and W. Tostowaryk. Comparative bioavailabilities from truncated blood level curves. J. Pharm. Sci. 64:1521–1524 (1975).

    Google Scholar 

  11. J. G. Wagner. An overview of the analysis and interpretation of bioavailability studies in man. Pharmacology 8:102–117 (1972).

    Google Scholar 

  12. M. Berman and M. Weiss. User's Manual for SAAM, National Institutes of Health, Bethesda, Md., 1974.

    Google Scholar 

  13. W. D. Hooper, G. R. Cannell, and R. G. Dickinson. Sensitive and selective assay of danazol in plasma by high-performance liquid chromatography. J. Chromatogr. 416:347–352 (1987).

    Google Scholar 

  14. G. A. Nygard, L. J. Lovett, G. R. Erdmann, and S. K. W. Khalil. Analysis of danazol in serum using high-performance liquid chromatography. J. Chromatogr. 415:438–444 (1987).

    Google Scholar 

  15. P. M. Harrison, A. M. Tonkin, and A. J. McLean. Determination of 4-amino-3(p-chlorophenyl)butyric acid (baclofen) in plasma by high-performance liquid chromatography. J. Chromatogr. 339:424–428 (1985).

    Google Scholar 

  16. K. Tada, T. Moroji, R. Sekiguchi, H. Motomuta, and T. Noguchi. Liquid-chromatographic assay of diazepam and its major metabolites in serum, and application to pharmacokinetic study of high doses of diazepam in schizophrenics. Clin. Chem. 10:1712–1715 (1985).

    Google Scholar 

  17. K. Yamaoka, T. Nakagawa, and T. Uno. Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J. Pharmacokin. Biopharm. 6:165–175 (1978).

    Google Scholar 

  18. G. W. Snedecor and W. C. Cochran. Statistical Methods, Iowa State University Press, Ames, 1976.

    Google Scholar 

  19. D. J. Schuirmann. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J. Pharmacokin. Biopharm. 15:657–680 (1987).

    Google Scholar 

  20. D. F. Morrison. In Multivariate Statistical Methods, McGraw-Hill, Toronto, Canada, 1967.

    Google Scholar 

  21. R. A. Ronfeld and L. Z. Benet. Interpretation of plasma concentration-time curves after oral dosing. J. Pharm. Sci. 66:178–180 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, M.N., Jackson, A.J. Suitability of Various Noninfinity Area Under the Plasma Concentration–Time Curve (AUC) Estimates for Use in Bioequivalence Determinations: Relationship to AUC from Zero to Time Infinity (AUCO–INF). Pharm Res 8, 512–517 (1991). https://doi.org/10.1023/A:1015863530888

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015863530888

Navigation