Skip to main content
Log in

A molecular test of cyanobacterial phylogeny: inferences from constraint analyses

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Parsimony and neighbor-joining analyses of 16S rDNA nucleotide sequences of 68 species and strains of cyanobacteria and prochlorophytes supported a monophyletic Nostocales, a monophyletic Stigonematales, three independent lineages of prochlorophytes within the cyanobacteria, and a paraphyletic Chroococcales (p<0.0001) and Oscillatoriales (p = 0.0147). Within the Oscillatoriales, the genus Oscillatoria formed an unnatural taxon (p<0.0001) and needs major revisions. Using constraint analysis, the genus Microcystis was found to be monophyletic and the paraphyletic positions of Microcystis elabens and M. holsatica are probably due to long-branch attraction. Further, a separation of Chroococcales based on varying levels of polyunsaturated fatty acids is more consistent with nucleotide-based phylogenies than with existing morphological groupings. It is proposed that Chroococcales be redefined to exclude the genus Microcystis, and that a new order be erected for Microcystis. Finally, it is more parsimonious to assume a common cyanobacterial/prochlorophyte ancestor, than to evoke de novo synthesis of chlb in each prochlorophyte lineage plus in the lineage leading to green chloroplasts. This common ancestor is proposed to have contained both chlorophyll a and b plus phycobilins. Subsequent multiple losses of chlb in cyanobacteria and the loss of chla and phycobilins in prochlorophytes, led to the currently observed pigment distribution. It is therefore, recommended that Prochlorales be reclassified as cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anagnostidis, K. & J. Komárek, 1985. Modern approach to the classification system of cyanophytes. 1. Introduction. Arch. Hydrobiol., Suppl. 71, Algol. Studies 38/39: 291–302.

    Google Scholar 

  • Anagnostidis, K. & J. Komárek, 1988. Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Arch. Hydrobiol., Suppl. 80, Algol. Studies 50/53: 327–472.

    Google Scholar 

  • Anagnostidis, K. & J. Komárek, 1990. Modern approach to the classification system of cyanophytes. 5. Stigonematales. Arch. Hydrobiol., Suppl. 86, Algol. Studies 59: 1–73.

    Google Scholar 

  • Burger‐Wiersma, T., M. Veenhuis, H. J. Korthals, C. C. M. Van de Wiel & L. R. Mur, 1986. A new prokaryote containing Chlsa and b. Nature 320: 262–264.

    Google Scholar 

  • Castenholz, R. W. & J. B. Waterbury, 1989. Oxygenic photosynthetic bacteria sect 19., Group I. Cyanobacteria. In Staley, J. T., M. P. Bryant, N. Pfennig & J. G. Holt (eds), Bergey's Manual of Systematic Bacteriology. Vol 3. Williams and Wilkins Co, Baltimore: 1710–1728.

    Google Scholar 

  • Chisholm, S. W., R. J. Olson, E. R. Zettler, R. Goericke, J. B. Waterbury & N. A. Welschmeyer, 1988. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334: 340–343.

    Google Scholar 

  • Delwiche, C. F. & J. D. Palmer, 1996. Rampant horizontal transfer and duplication of Rubisco genes in eubacteria and plastids. Mol. Biol. Evol. 13: 873–882.

    Google Scholar 

  • Desikachary, T., 1973. Status of classical taxonomy. In Carr, N. G. & B. A. Whitton (eds), The Biology of Blue-Green Algae. University of California Press, Berkeley: 473–486.

    Google Scholar 

  • Drouet, F., 1981. Summary of the classification of blue-green algae. Beihefte Nova Hedwigia 66: 135–209.

    Google Scholar 

  • Felsenstein, J., 1978. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 40: 366–375.

    Google Scholar 

  • Florenzano, G., W. Balloni & R. Materassi, 1986. Nomenclature of Prochloron didemni (Lewin, 1977) sp. n., nom. rev., Prochloron (Lewin, 1976) gen. n., nom. rev., Prochloraceae fam. n., Prochlorales ord. n., nom. rev. in the class Photobacteria Gibbons and Murray 1978. Internat. J. Syst. Bacteriol. 36: 351–353.

    Google Scholar 

  • Garcia‐Pichel, F., U. Nubel & G. Muyzer, 1998. The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch. Microbiol. 169: 469–482.

    Google Scholar 

  • Geitler, L., 1925. Synoptische Darstellung der Cyanophyceen in morphologischer und systematischer Hinsicht. Beih. Bot. Centralbl. 2: 163–324.

    Google Scholar 

  • Geitler, L., 1932. Cyanophyceae. In Kolkwitz, R. (ed.), Rabenhorst's Kryptogamenflora von Deutschland, österreich und der Schweiz. Vol XIV. Akadem. Verlagsgesellsch., Leipzig. Reprinted 1971, Johnson, New York: 1–1196.

    Google Scholar 

  • Holton, R. W., H. H. Blecker & T. S. Stevens, 1968. Fatty acids in the blue-green algae: possible relation to phylogenetic position. Science 160: 545–547.

    Google Scholar 

  • Honda, D., A. Yokota & J. Sugiyama, 1999. Detection of seven major evolutionary lineages in cyanobacteria based on 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J. Mol. Evol. 48: 723–739.

    Google Scholar 

  • Higgins, D. G., A. J. Bleasby & R. Fuchs, 1992. CLUSTAL V: improved software for multiple sequence alignment. Comp. Appl. Biosci. 8: 189–191.

    Google Scholar 

  • Johns, R. B., P. D. Nichols, F. T. Gillian, G. J. Perry & J. K. Volkman, 1981. Lipid composition of the symbiotic prochlorophyte in relation to the host. Comp. Biochem. Physiol. 69B: 843–849.

    Google Scholar 

  • Kenyon, C. N., 1972. Fatty acid composition of unicellular strains of blue-green algae. J. Bacteriol. 109: 827–834.

    Google Scholar 

  • Kenyon, C. N., R. Rippka & R. Y. Stanier, 1972. Fatty acid composition and physiological properties of some filamentous blue-green algae. Arch. Microbiol. 83: 216–236.

    Google Scholar 

  • Komárek, J. & K. Anagnostidis, 1986. Modern approach to the classification system of cyanophytes. 2. Chroococcales. Arch. Hydrobiol., Suppl. 73, Algol. Studies 43: 157–226.

    Google Scholar 

  • Komárek, J. & K. Anagnostidis, 1989. Modern approach to the classification system of cyanophytes. 4. Nostocales. Arch. Hydrobiol., Suppl. 82, Algol. Studies 56: 247–345.

    Google Scholar 

  • Kondo, R., M. Komura, S. Hiroishi & Y. Hata, 1998. Detection and 16S rDNA sequence analysis of a bloom-forming cyanobacterial genus Microcystis. Fish. Sci. 64: 840–841.

    Google Scholar 

  • Lachance, M.-A., 1981. Genetic relatedness of heterocystous cyanobacteria by deoxyribonucleic acid-deoxyribonucleic acid reassociation. Int. J. Syst. Bact. 31: 139–147.

    Google Scholar 

  • Larson, A., 1994. The comparison of morphological and molecular data in phylogenetic systematics. In Schierwater, B., B. Streit, G. B. Wagner & R. DeSalle (eds), Molecular Ecology and Evolution: Approaches and Applications. Birkhäuser Verlag, Basel: 371–390.

    Google Scholar 

  • Lewin, R. A., 1976. Prochlorophyta as a proposed new division of algae. Nature 261: 697–698.

    Google Scholar 

  • Lewin, R. A., 1977. Prochloron, type genus of the Prochlorophyta. Phycologia 16: 217.

    Google Scholar 

  • Lewin, R. A., 1981. Prochloron and the theory of symbiogenesis. Ann. New York Acad. Sci. 361: 325–329.

    Google Scholar 

  • Lewin, R. A., 1984. Prochloron — a status report. Phycologia 23: 203–204.

    Google Scholar 

  • Lockhart, P. J., M. A. Steel, M. D. Hendy & D. Penny, 1994. Recovering evolutionary trees under a more realistic model of sequence evolution. Mol. Biol. Evol. 11: 605–621.

    Google Scholar 

  • Matthijs, H. C. P., G. W. M. Van der Staay & L. R. Mur, 1994. Prochlorophytes: The 'other’ cyanobacteria? In Bryant, D. A. (ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands: 49–64.

    Google Scholar 

  • Mazel, D., J. Houmard, A. M. Castets & N. Tabdeau de Marsac, 1990. Highly repetitive DNA sequences in cyanobacterial genomes. J. Bacteriol. 172: 2755–2761.

    Google Scholar 

  • Morden, C. W. & S. S. Golden, 1989. psbA genes indicate common ancestry of prochlorophytes and chloroplasts. Nature 337: 383–385.

    Google Scholar 

  • Miller, K. R. & J. S. Jacob, 1989. On Prochlorothrix. Nature 338: 303–304.

    Google Scholar 

  • Neilan, B., D. Jacobs, T. Del Dot, L. Blackall, P. R. Hawkins, P. T. Cox & A. E. Goodman, 1997. rRNA sequences and evolutionary relationships among toxic and non-toxic cyanobacteria of the genus Microcystis. Internat. J. Syst. Bacteriol. 47: 693–697.

    Google Scholar 

  • Nelissen, B., R. De Baere, A. Wilmotte & R. De Wachter, 1996. Phylogenetic relationships of nonaxenic filamentous cyanobacterial strains based on 16S rDNA sequence analysis. J. Mol. Evol. 42: 194–200.

    Google Scholar 

  • Palenik, B. & R. Haselkorn, 1992. Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature 355: 265–267.

    Google Scholar 

  • Pearson, J. E. & J.M. Kingsbury, 1966. Culturally induced variation in four morphologically diverse blue-green algae. Am. J. Bot. 53: 192–200.

    Google Scholar 

  • Rippka, R. & M. Herdman, 1992. Pasteur Culture Collection of Cyanobacteria. Catalogue and Taxonomic Handbook. Vol I: Catalogue of Strains. Institute Pasteur, Paris: 103 pp.

    Google Scholar 

  • Rippka, R., J. Deruelles, J. B. Waterbury, M. Herdman & R. Y. Stanier, 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1–61.

    Google Scholar 

  • Rudi, K., O. M. Skulberg & K. S. Jakobsen, 1998. Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J. Bacteriol. 180: 3453–3461.

    Google Scholar 

  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    Google Scholar 

  • Stam, W. T., 1980. Relationships between a number of filamentous blue-green algal strains Cyanophyceae. revealed by DNA-DNA hybridization. Arch. Hydrobiol., Suppl. 56, Algol. Studies 25: 351–374.

    Google Scholar 

  • Stam, W. T. & G. Venema, 1975. The use of DNA-DNA hybridization for determination of the relationship between some blue-green algae Cyanophyceae. Acta Bot. Neerland. 26: 327–342.

    Google Scholar 

  • Stanier, R. Y., W. R. Sistrom, T. A. Hansen, B. A. Whitton, R. W. Castenholz, N. Pfennig, V. N. Gorlenko, E. N. Kondratieva, K. E. Eimhjellen, R. Whittenbury, R. L. Gherna & H. G. Trüper, 1978. Proposal to place the nomenclature of the cyanobacteria blue-green algae under the rules of the International Code of Nomenclature of Bacteria. International J. Syst. Bacteriol. 28: 335–336.

    Google Scholar 

  • Swofford, D., 1999. PAUP*: Phylogenetic Analysis Using Parsimony (and other methods), vers. 4.0, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Tomitani, A., K. Okada, H. Miyashita, H. C. Matthijs, T. Ohno & A. Tanaka, 1999. Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400: 159–162.

    Google Scholar 

  • Turner, S., T. Burger-Wiersma, S. J. Giovannoni, L. R. Murt & N. R. Pace, 1989. The relationship of a prochlorophyte Prochlorothrix hollandica to green chloroplasts. Nature 337: 380–382.

    Google Scholar 

  • Urbach, E., D. L. Robertson & S. W. Chisholm, 1992. Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355: 267–270.

    Google Scholar 

  • Urbach, E., D. J. Scanlan, D. L. Distel, J. B. Waterbury & S. W. Chisholm, 1998. Rapid diversification of marine phytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J. Mol. Evol. 46: 188–201.

    Google Scholar 

  • Ward, D. M., M. M. Bateson, R. Weller & A. L. Ruff‐Roberts, 1992. Ribosomal RNA analysis of microorganisms as they occur in nature. Adv. Microbiol. Ecol. 12: 219–286.

    Google Scholar 

  • Waterbury, J. B. & R. Rippka, 1989. Oxygenic photosynthetic bacteria sect 19., Subsection I. Order Chroococcales. In Staley, J. T., M. P. Bryant, N. Pfennig & J. G. Holt (eds), Bergey's Manual of Systematic Bacteriology. Vol 3. Williams and Wilkins Co, Baltimore: 1729–1746.

    Google Scholar 

  • Wilmotte, A., 1994. Molecular evolution and taxonomy of cyanobacteria. In Bryant, D. A. (ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands: 1–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litvaitis, M.K. A molecular test of cyanobacterial phylogeny: inferences from constraint analyses. Hydrobiologia 468, 135–145 (2002). https://doi.org/10.1023/A:1015262621848

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015262621848

Navigation