Skip to main content
Log in

Spatio-temporal modelling of broad scale heterogeneity in soil moisture content: a basis for an ecologically meaningful classification of soil landscapes

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

We describe the classification of landscapes characterised bymineral soil using a model that calculates soil moisture availability on amonthly basis. Scotland is used as a case study area. The model uses potentialsoil moisture deficit, estimated using broad scale (40 × 40 km)climate patterns, in conjunction with meteorological station measurements toobtain finer scale values of climatic soil moisture deficit. Point estimates ofsoil available water are obtained for soil characteristics using appropriatepedotransfer functions, and geostatistical techniques are used to upscale theresults and interpolate to a 1-km grid. Known heterogeneityin soil physical characteristics is used to provide local corrections to thepotential soil moisture deficit, estimated using the climatic variables above.Temporal profiles of monthly water content are modelled for each1-km location and classified into six classes usingunsupervised cluster analysis. The spatial distribution of these classesreflects regional variations in the availability of moisture and energy, onwhich finer-grained topographic patterns are superimposed. In the case study,the broad scale spatial heterogeneity of heathlands and grasslands on mineralsoils in Scotland is shown to be strongly related to the soil moistureclassification. The results can be used in studies investigating the patternsofdistribution of communities at the landscape and regional scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong H.M., Gordon I.J., Grant S.A., Hutchings N.J., Milne J.A. and Sibbald A.R. 1997. A Model of the Grazing of Hill Vegetation by Sheep in the UK. 1. The Prediction of Vegetation Biomass Journal of Applied Ecology 34: 166-185.

    Google Scholar 

  • Bardgett R.D., Marsden J.H., Howard D.C. and Hossel J.E. 1995. The extent and condition of heather in moorland, and the potential impact of climate change. In: Thompson D.B.A., Hester A.J. and Usher M.B. (eds), Heaths and Moorland: Cultural Landscapes. Scottish Natural Heritage. Her Majesty Stationary Office, Edinburgh, Scotland, UK.

    Google Scholar 

  • Baron J.S., Hartman M.D., Kittel T.G.F., Band L.E., Ojima D.S. and Lammers R.B. 1998. Effects of land cover, water redistribution, and temperature on ecosystem processes in the South Platte Basin. Ecological Applications 8: 1037-1051.

    Google Scholar 

  • Bibby J.S., Douglas H.A., Thomasson A.J. and Robertson J.S. 1982. Land Capability Classification for Agriculture. Aberdeen University Press, Aberdeen, Scotland, UK.

    Google Scholar 

  • Briones M.J.I., Ineson P. and Piearce T.G. 1997. Effects of climate change on soil fauna; Responses of enchytraeids, Diptera larvae and tardigrades in a transplant experiment. Applied Soil Ecology 6: 117-134.

    Article  Google Scholar 

  • Chertov O.G. and Komarov A.S. 1997. A model of soil organic matter dynamics. Ecological Modelling 94: 177-189.

    Article  CAS  Google Scholar 

  • Deutsch C.V. and Journel A.G. 1992. GSLIB Geostatistical software Library and User Guide. OUP, New York, USA.

    Google Scholar 

  • Edwards C.A. and Bohlen P.J. 1996. Biology and Ecology of Earthworms. 3rd edn. Chapman and Hall, London, UK.

    Google Scholar 

  • Field M. 1983. The Meteorological Office Rainfall and Evaporation Calculation System. Agricultural Water Management 6: 297-306.

    Article  Google Scholar 

  • Goovaerts P. 1997. Geostatistics for Natural Resources Evaluation. OUP, New York, New York, USA.

    Google Scholar 

  • Haxeltine A., Prentice I.C. and Creswell D.I. 1996. A coupled carbon and water flux model to predict vegetation structure. Journal of Vegetation Science 7: 651-666.

    Google Scholar 

  • Heuvelink G.B.M. and Pebesma E.J. 1999. Spatial aggregation and soil process modelling. Geoderma 89: 47-65.

    Article  Google Scholar 

  • Hodkinson I.D., Webb N.R., Bale J.S. and Block W. 1999. Hydrology, water availability and tundra ecosystem function in a changing climate: the need for a closer integration of ideas? Global Change Biology 5: 359-369.

    Article  Google Scholar 

  • Isaaks E.H. and Srivastava R.M. 1989. An Introduction to Applied Geostatistics. Oxford University Press, London, UK.

    Google Scholar 

  • Iverson L.R., Dale M.E., Scott C.T. and Prasad A. 1997. GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests USA. Landscape Ecology 12: 331-348.

    Article  Google Scholar 

  • Jarvis R.A., Bendelow V.C., Bradley R.I., Carroll D.M., Furness R.R., Kilgour I.N.L. et al. 1984. Soils and their use in northern England. Lawes Agricultural Trust. Rothamsted Experimental station, Harpenden, UK, Soil survey of England and Wales Bulletin no 10.

    Google Scholar 

  • Kabat P., Hutjes R.W.A. and Feddes R.A. 1997. The scaling characteristics of soil parameters: from plot scale heterogeneity to subgrid parametrisation. Journal of Hydrology 190: 363-396.

    Article  CAS  Google Scholar 

  • Lance A.N. 1987. Estimating acceptable stocking levels for heather moorland. In: Bell M. and Bunce R.G.H. (eds), Agriculture and Conservation of the Hills and Uplands. ITE, Merlewood, UK.

    Google Scholar 

  • Leiros M.C., Trasar-Cepeda C., Sean S. and Gil-Sotres F. 1999. Dependence of mineralisation of soil organic matter on temperature and moisture. Soil Biology and Biochemistry 31: 227-335.

    Google Scholar 

  • Li J. and Islam S. 1999. On the estimation of soil moisture profile and surface fluxes partitioning from sequential assimilation of surface layer soil moisture. Journal of Hydrology 220: 86-103.

    Article  Google Scholar 

  • Lilly A. and Matthews K. 1994. A soil wetness class map of Scotland: new assessments of soil and climate data for land evaluation. Geoforum 25: 371-379.

    Article  Google Scholar 

  • Matthews K.B., MacDonald A., Aspinall R.J., Hudson G., Law A.N.R. and Paterson E. 1994. Climatic soil moisture deficit-climate and soil data integration in a GIS. Climatic Change 28: 273-287.

    Article  Google Scholar 

  • MacDonald A., Matthews K.B., Paterson E. and Aspinall R.J. 1994. The impact of climate change on the soil moisture regime of Scottish mineral soils. Environmental Pollution 83: 245-250.

    Article  CAS  PubMed  Google Scholar 

  • Morris S.J. and Boerner R.E.J. 1998. Landscape pattern of nitrogen mineralisation and nitrification in southern Ohio hardwood forests. Landscape Ecology 13: 215-224.

    Article  Google Scholar 

  • Neave H.M., Cunningham R.B., Norton T.W. and Nix H.A. 1998. Biological inventory for conservation evaluation.3. Relationships between birds, vegetation and environmental attributes in southern Australia. Forestry Ecology and Management 85: 197-218.

    Article  Google Scholar 

  • Neave H.M. and Norton T.W. 1998. Biological inventory for conservation evaluation-IV. Composition, distribution and spatial prediction of vegetation assemblages in southern Australia. Forestry Ecology and Management 106: 259-281.

    Article  Google Scholar 

  • Penman H.L. 1948. Natural evaporation from open water, bare soil and grass. In: Proceedings of the Royal Society series A., pp. 120-145.

  • Rodrigo A., Recous S., Neil C. and Mary B. 1997. Modelling temperature and moisture effects on C-N transformations in soils: comparison of nine models. Ecological Modelling 102: 325-339.

    Article  CAS  Google Scholar 

  • Saleska S.R., Hart J. and Torn M.S. 1999. The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow. Global Change Biology 5: 125-141.

    Article  Google Scholar 

  • Sellers P.J., Heiser M.D., Hall F.G., Verma S.B., Desjardin R.L., Schuepp P.M. et al. 1997. The impact of using area averaged land surface properties-topography, vegetation condition, soil wetness-in calculations of intermediate scale approx. 10 km2 surface-atmosphere heat and moisture fluxes. Journal of Hydrology 190: 269-301.

    Article  Google Scholar 

  • Stephenson N.L. 1998. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography 25: 855-870.

    Article  Google Scholar 

  • Strong D.T., Sale P.W.G. and Helyar K.R. 1998. The influence of the soil matrix on nitrogen mineralisation and nitrification. I. Spatial variation and a hierarchy of soil properties. Australian Journal of Soil Research 36: 429-447.

    Article  CAS  Google Scholar 

  • Thornthwaite C. 1948. An approach to a rational classification of climate. Geographical Review 38: 55-95.

    Google Scholar 

  • Thompson D.B.A., Hester A.J. and Usher M.B. (eds) 1995. Heaths and Moorland: Cultural Landscapes. Scottish Natural Heritage. Her Majesty Stationary Office, Edinburgh, Scotland, UK.

    Google Scholar 

  • Vyas A.D., Trivedi A.J., Calla O.P.N., Rana S.S. and Ragu G. 1985. Passive microwave remote sensing of soil moisture. International Journal of Remote Sensing 6: 1153-1162.

    Google Scholar 

  • Weishampel J.F., Knox R.G. and Levine E.R. 1998. Soil saturation effects on forest dynamics: scaling across a southern boreal/northen hardwood landscape. Landscape Ecology 14: 121-135.

    Article  Google Scholar 

  • Whittaker R.H. 1967. Gradient analysis of vegetation. Biological Review 49: 207-264.

    Google Scholar 

  • Whittaker R.H. 1978. Direct Gradient Analysis. In: Whittaker R.H. (ed.), Ordination of Plant communities. Dr W.Junk, The Hague, The Netherlands, pp. 7-50.

    Google Scholar 

  • Wales-Smith B.G., Prior M.J. and Arnott J.A. 1971. A meteorological system for estimating evaporation, soil moisture deficit and hydrologically effective rainfall. Meteorological Office, Interim report.

  • Yoke K.A. and Rennie J.C. 1996. Landscape ecosystem classification in the Cherokee National Forest, east Tennessee, USA. Environmental Monitoring and Assessment 39: 323-338.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gimona, A., Birnie, R.V. Spatio-temporal modelling of broad scale heterogeneity in soil moisture content: a basis for an ecologically meaningful classification of soil landscapes. Landscape Ecol 17, 27–41 (2002). https://doi.org/10.1023/A:1015236110766

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015236110766

Navigation