Skip to main content
Log in

Harnessing the Immune System for Neuroprotection: Therapeutic Vaccines for Acute and Chronic Neurodegenerative Disorders

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Nerve injury causes degeneration of directly injured neurons and the damage spreads to neighboring neurons. Research on containing the damage has been mainly pharmacological, and has not recruited the immune system. We recently discovered that after traumatic injury to the central nervous system (spinal cord or optic nerve), the immune system apparently recognizes certain injury-associated self-compounds as potentially destructive and comes to the rescue with a protective antiself response mediated by a T-cell subpopulation that can recognize self-antigens. We further showed that individuals differ in their ability to manifest this protective autoimmunity, which is correlated with their ability to resist the development of autoimmune diseases. This finding led us to suggest that the antiself response must be tightly regulated to be expressed in a beneficial rather than a destructive way. In seeking to develop a neuroprotective therapy by boosting the beneficial autoimmune response to injury-associated self-antigens, we looked for an antigen that would not induce an autoimmune disease. Candidate vaccines were the safe synthetic copolymer Cop-1, known to cross-react with self-antigens, or altered myelin-derived peptides. Using these compounds as vaccines, we could safely boost the protective autoimmune response in animal models of acute and chronic insults of mechanical or biochemical origin. Since this vaccination is effective even when given after the insult, and because it protects against the toxicity of glutamate (the most common mediator of secondary degeneration), it can be used to treat chronic neurodegenerative disorders such as glaucoma, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aloisi, F.,Ria, F., andAdorini, L. (2000). Regulation of T-cell responses by CNS antigen-presenting cells: Different roles for microglia and astrocytes. Immunol. Today 21: 141-147.

    Google Scholar 

  • Aloisi, F.,Ria, F.,Columba-Cabezas, S.,Hess, H.,Penna, G., andAdorini, L. (1999). Relative efficiency of microglia, astrocytes, dendritic cells and B cells in naive CD4C T cell priming and Th1/Th2 cell restimulation. Eur. J. Immunol. 29: 2705-2714.

    Google Scholar 

  • Barouch, R.,Appel, E.,Kazimirsky, G.,Braun, A.,Renz, H., andBrodie, C. (2000). Differential regulation of neurotrophin expression by mitogens and neurotransmitters in mouse lymphocytes. J. Neuroimmunol. 103: 112-121.

    Google Scholar 

  • Barouch, R.,Appel, E.,Kazimirsky, G., andBrodie, C. (2001a). Macrophages express neurotrophins and neurotrophin receptors. Regulation of nitric oxide production by NT-3. J. Neuroimmunol. 112: 72-77.

    Google Scholar 

  • Barouch, R.,Kazimirsky, G.,Appel, E., andBrodie, C. (2001b). Nerve growth factor regulates TNF-alpha production in mouse macrophages via MAP kinase activation. J. Leukoc. Biol. 69: 1019-1026.

    Google Scholar 

  • Barouch, R., andSchwartz, M. (2001). Autoreactive T cells induce neurotrophin production by immune and neural cells in the injured optic nerve: Correlation to protective autoimmunity. Submitted.

  • Bethea, J. R.,Castro, M.,Keane, R.W.,Lee, T. T.,Dietrich, W. D., andYezierski, R. P. (1998). Traumatic spinal cord injury induces nuclear factor-kappaB activation. J. Neurosci. 18: 3251-3260.

    Google Scholar 

  • Braun, A.,Appel, E.,Baruch, R.,Herz, U.,Botchkarev, V.,Paus, R.,Brodie, C., andRenz, H. (1998). Role of nerve growth factor in a mouse model of allergic airway inflammation and asthma. Eur. J. Immunol. 28: 3240-3251.

    Google Scholar 

  • Bruno, V.,Scapagnini, U., andCanonico, P. L. (1993). Excitatory amino acids and neurotoxicity. Funct. Neurol. 8: 279-292.

    Google Scholar 

  • Butovsky, O.,Hauben, E., andSchwartz, M. (2001). Morphological aspects of spinal cord autoimmune neuroprotection: Colocalization of T cells with B7-2 (CD86) and prevention of cyst formation. FASEB J. 15: 1065-1067.

    Google Scholar 

  • Connaughton, V. P.,Behar, T. N.,Liu, W. L., andMassey, S. C. (1999). Immunocytochemical localization of excitatory and inhibitory neurotransmitters in the zebrafish retina. Vis. Neurosci. 16: 483-490.

    Google Scholar 

  • Constantini, S., andYoung, W. (1994). The effects of methylprednisolone and the ganglioside GM1 on acute spinal cord injury in rats. J. Neurosurg. 80: 97-111.

    Google Scholar 

  • Cserr, H. F.,Harling-Berg, C. J., andKnopf, P. M. (1992). Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 2: 269-276.

    Google Scholar 

  • Cserr, H. F., andKnopf, P. M. (1992). Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: A new view. Immunol. Today 13: 507-512.

    Google Scholar 

  • Davanger, S.,Ottersen,O. P., andStorm-Mathisen, J. (1991). Glutamate,GABA, and glycine in the human retina: An immunocytochemical investigation. J. Comp. Neurol. 311: 483-494.

    Google Scholar 

  • Dougherty, K. D.,Dreyfus, C. F., andBlack, I. B. (2000). Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol. Dis. 7: 574-585.

    Google Scholar 

  • Ehrhard, P. B.,Erb, P.,Graumann, U., andOtten, U. (1993). Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4-positive T-cell clones. Proc. Natl. Acad. Sci. U.S.A 90: 10984-10988.

    Google Scholar 

  • Elkabes, S.,Peng, L., andBlack, I. B. (1998). Lipopolysaccharide differentially regulates microglial trk receptor and neurotrophin expression. J. Neurosci. Res. 54: 117-122.

    Google Scholar 

  • Faden, A. I.,Ivanova, S. A.,Yakovlev, A. G., andMukhin, A. G. (1997). Neuroprotective effects of group III mGluR in traumatic neuronal injury. J. Neurotrauma 14: 885-895.

    Google Scholar 

  • Flugel, A.,Schwaiger, F. W.,Neumann, H.,Medana, I.,Willem, M.,Wekerle, H.,Kreutzberg, G. W., andGraeber, M. B. (2000). Neuronal FasL induces cell death of encephalitogenic T lymphocytes. Brain Pathol. 10: 353-364.

    Google Scholar 

  • Goverman, J.,Brabb, T.,Paez, A.,Harrington, C., andvon Dassow, P. (1997). Initiation and regulation of CNS autoimmunity. Crit. Rev. Immunol. 17: 469-480.

    Google Scholar 

  • Hammarberg, H.,Lidman, O.,Lundberg, C.,Eltayeb, S. Y.,Gielen, A. W.,Muhallab, S.,Svenningsson, A.,Linda, H.,van Der Meide, P. H.,Cullheim, S.,Olsson, T., andPiehl, F. (2000). Neuroprotection by encephalomyelitis: Rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J. Neurosci. 20: 5283-5291.

    Google Scholar 

  • Hauben, E.,Agranov, E.,Gothilf, A.,Nevo, U.,Cohen, A.,Smirnov, I.,Steinman, L., andSchwartz, M. (2001). Posttraumatic therapeutic vaccination with modified myelin self-antigen prevents complete paralysis while avoiding autoimmune disease. J. Clin. Invest. 108: 591-599.

    Google Scholar 

  • Hauben, E.,Butovsky, O.,Nevo, U.,Yoles, E.,Moalem, G.,Agranov, E.,Mor, F.,Leibowitz-Amit, R.,Pevsner, E.,Akselrod, S.,Neeman, M.,Cohen, I. R., andSchwartz, M. (2000a). Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion. J. Neurosci. 20: 6421-6430.

    Google Scholar 

  • Hauben, E.,Nevo, U.,Yoles, E.,Moalem, G.,Agranov, E.,Mor, F.,Akselrod, S.,Neeman, M.,Cohen, I. R., andSchwartz, M. (2000b). Autoimmune T cells as potential neuroprotective therapy for spinal cord injury. Lancet 355: 286-287.

    Google Scholar 

  • Hickey, W. F.,Hsu, B. L., andKimura, H. (1991). T-lymphocyte entry into the central nervous system. J. Neurosci. Res. 28: 254-260.

    Google Scholar 

  • Hirschberg, D. L.,Moalem, G.,He, J.,Mor, F.,Cohen, I. R., andSchwartz, M. (1998). Accumulation of passively transferred primed T cells independently of their antigen specificity following central nervous system trauma. J. Neuroimmunol. 89: 88-96.

    Google Scholar 

  • Hirschberg, D. L., andSchwartz, M. (1995). Macrophage recruitment to acutely injured central nervous system is inhibited by a resident factor: A basis for an immune-brain barrier. J. Neuroimmunol. 61: 89-96.

    Google Scholar 

  • Hirschberg, D. L.,Yoles, E.,Belkin, M., andSchwartz, M. (1994). Inflammation after axonal injury has conflicting consequences for recovery of function: Rescue of spared axons is impaired but regeneration is supported [see comments]. J. Neuroimmunol. 50: 9-16.

    Google Scholar 

  • Ibanez, C. F. (1995). Neurotrophic factors: From structure-function studies to designing effective therapeutics. Trends Biotechnol. 13: 217-227.

    Google Scholar 

  • Jojich, L., andPourcho, R. G. (1996). Glutamate immunoreactivity in the cat retina: A quantitative study. Vis. Neurosci. 13: 117-133.

    Google Scholar 

  • Kerschensteiner, M.,Gallmeier, E.,Behrens, L.,Leal, V. V.,Misgeld, T.,Klinkert, W. E.,Kolbeck, R.,Hoppe, E.,Oropeza-Wekerle, R. L.,Bartke, I.,Stadelmann, C.,Lassmann, H.,Wekerle, H., andHohlfeld, R. (1999). Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: A neuroprotective role of inflammation? J. Exp. Med. 189: 865-870.

    Google Scholar 

  • Kipnis, J.,Yoles, E.,Porat, Z.,Cohen, A.,Mor, F.,Sela, M.,Cohen, I. R., andSchwartz, M. (2000). T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc. Natl. Acad. Sci. U.S.A. 97: 7446-7451.

    Google Scholar 

  • Kipnis, J.,Yoles, E.,Schori, H.,Hauben, E.,Shaked, I., andSchwartz, M. (2001). Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J. Neurosci. 21: 4564-4571.

    Google Scholar 

  • Klocker, N.,Kermer, P.,Weishaupt, J. H.,Labes, M.,Ankerhold, R., andBahr, M. (2000). Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-30-kinase/protein kinase B signaling. J. Neurosci. 20: 6962-6967.

    Google Scholar 

  • Kuchroo, V. K.,Das,M. P.,Brown, J. A.,Ranger, A. M.,Zamvil, S. S.,Sobel, R. A.,Weiner, H. L.,Nabavi, N., andGlimcher, L. H. (1995). B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: Application to autoimmune disease therapy. Cell 80: 707-718.

    Google Scholar 

  • Lazarov-Spiegler, O.,Solomon, A. S.,Zeev-Brann, A. B.,Hirschberg, D. L.,Lavie, V., andSchwartz, M. (1996). Transplantation of activated macrophages overcomes central nervous system regrowth failure. FASEB J. 10: 1296-1302.

    Google Scholar 

  • Levkovitch-Verbin, H.,Harris-Cerruti, C.,Groner, Y.,Wheeler, L. A.,Schwartz, M., andYoles, E. (2000). RGC death in mice after optic nerve crush injury: Oxidative stress and neuroprotection. Invest. Ophthalmol. Vis. Sci. 41: 4169-4174.

    Google Scholar 

  • Lotan, M., andSchwartz, M. (1994). Cross talk between the immune system and the nervous system in response to injury: Implications for regeneration. FASEB J. 8: 1026-1033.

    Google Scholar 

  • Marc, R. E.,Liu, W. L.,Kalloniatis, M.,Raiguel, S. F., andvan Haesendonck, E. (1990). Patterns of glutamate immunoreactivity in the goldfish retina. J. Neurosci. 10: 4006-4034.

    Google Scholar 

  • Matyszak, M. K., andPerry, V.H. (1995). Demyelination in the central nervous system following a delayedtype hypersensitivity response to bacillus Calmette-Guerin. Neuroscience 64: 967-977.

    Google Scholar 

  • Matyszak, M. K.,Townsend, M. J., andPerry, V.H. (1997). Ultrastructural studies of an immune-mediated inflammatory response in the CNS parenchyma directed against a non-CNS antigen. Neuroscience 78: 549-560.

    Google Scholar 

  • McIntosh, T. K. (1993). Novel pharmacologic therapies in the treatment of experimental traumatic brain injury: A review. J. Neurotrauma 10: 215-261.

    Google Scholar 

  • Miwa, T.,Furukawa, S.,Nakajima, K.,Furukawa, Y., andKohsaka, S. (1997). Lipopolysaccharide enhances synthesis of brain-derived neurotrophic factor in cultured rat microglia. J. Neurosci. Res. 50: 1023-1029.

    Google Scholar 

  • Moalem, G.,Gdalyahu, A.,Shani, Y.,Otten, U.,Lazarovici, P.,Cohen, I. R., andSchwartz, M. (2000). Production of neurotrophins by activated T cells: Implications for neuroprotective autoimmunity. J. Autoimmun. 15: 331-345.

    Google Scholar 

  • Moalem, G.,Leibowitz-Amit, R.,Yoles, E.,Mor, F.,Cohen, I. R., andSchwartz. M. (1999a). Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med. 5: 49-55.

    Google Scholar 

  • Moalem, G.,Monsonego, A.,Shani, Y.,Cohen, I. R., andSchwartz, M. (1999b). DifferentialTcell response in central and peripheral nerve injury: Connection with immune privilege. FASEB J. 13: 1207-1217.

    Google Scholar 

  • Monsonego, A.,Beserman, Z. P.,Yoles, E.,Weiner, H. L., andSchwartz. M. (2001). Oral administration of myelin basic protein attenuates posttraumatic CNS degeneration. Submitted.

  • Muir, K. W., andLees, K. R. (1995). Clinical experience with excitatory amino acid antagonist drugs. Stroke 26: 503-513.

    Google Scholar 

  • Nakao, N., andBrundin, P. (1998). Neurodegeneration and glutamate induced oxidative stress. Prog. Brain. Res. 116: 245-263.

    Google Scholar 

  • Netland, P. A.,Chaturvedi, N., andDreyer, E. B. (1993). Calcium channel blockers in the management of low-tension and open-angle glaucoma. Am. J. Ophthalmol. 115: 608-613.

    Google Scholar 

  • Novikova, L. N.,Novikov, L. N., andKellerth, J. O. (2000). Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration. Eur. J. Neurosci. 12: 776-780.

    Google Scholar 

  • Olney, J.W. (1994a). Excitatory transmitter neurotoxicity. Neurobiol. Aging 15: 259-260.

    Google Scholar 

  • Olney, J. W. (1994b). New mechanisms of excitatory transmitter neurotoxicity. J. Neural Transm. 43 (Suppl): 47-51.

    Google Scholar 

  • Otten, U.,Scully, J. L.,Ehrhard, P. B.,Gadient, R. A. (1994). Neurotrophins: Signals between the nervous and immune systems. Prog. Brain Res. 103: 293-305.

    Google Scholar 

  • Perry, V. H.,Brown, M. C., andGordon, S. (1987). The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J. Exp. Med. 165: 1218-1223.

    Google Scholar 

  • Popovich, P. G.,Guan, Z.,Wei, P.,Huitinga, I.,van Rooijen, N., andStokes, B. T. (1999). Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Neurol. 158: 351-365.

    Google Scholar 

  • Povlishock, J. T., andChristman, C. W. (1995). The pathobiology of traumatically induced axonal injury in animals and humans: A review of current thoughts. J. Neurotrauma. 12: 555-564.

    Google Scholar 

  • Rapalino, O.,Lazarov-Spiegler, O.,Agranov, E.,Velan, G. J.,Yoles, E.,Fraidakis, M.,Solomon, A.,Gepstein, R.,Katz, A.,Belkin, M.,Hadani, M., andSchwartz, M. (1998). Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med. 4: 814-821.

    Google Scholar 

  • Schori, H.,Kipnis, J.,Yoles, E.,WoldeMussie, E.,Ruiz, G.,Wheeler, L. A., andSchwartz, M. (2001a). Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: Implications for glaucoma. Proc. Natl. Acad. Sci. U.S.A. 98: 3398-3403.

    Google Scholar 

  • Schori, H.,Shachar, I., andSchwartz, M. (2001b). B cells have an adverse effect on neuronal survival from glutamate toxicity. Submitted.

  • Schori, H., Yoles, E., and Schwartz, M. (in press). T-cell-based immunity couteracts potential toxicity of glutamate in the central nervous system. J. Neuroimmunol.

  • Schwartz, M. (2000). Beneficial autoimmune T cells and posttraumatic neuroprotection. Ann. N. Y. Acad. Sci. 917: 341-347.

    Google Scholar 

  • Schwartz, M. (2001). Physiological approaches to neuroprotection. Boosting of protective autoimmunity. Surv. Ophthalmol. 45(Suppl. 3): S256-S260. (Discussion, S273-S256).

    Google Scholar 

  • Schwartz, M.,Belkin, M.,Yoles, E., andSolomon, A. (1996). Potential treatment modalities for glaucomatous neuropathy: Neuroprotection and neuroregeneration. J. Glaucoma. 5: 427-432.

    Google Scholar 

  • Schwartz, M., andKipnis, J. (2001). Protective autoimmunity: Regulation and prospects for vaccination after brain and spinal cord injuries. Trends Mol. Med. 7: 252-258.

    Google Scholar 

  • Schwartz, M.,Moalem, G.,Leibowitz-Amit, R., andCohen, I. R. (1999). Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci. 22: 295-299.

    Google Scholar 

  • Schwartz, M.,Yoles, E. (2000). Neuroprotection: A new treatment modality for glaucoma? Curr. Opin. Ophthalmol. 11: 107-111.

    Google Scholar 

  • Shrikant, P., andBenveniste, E. N. (1996). The central nervous system as an immunocompetent organ: Role of glial cells in antigen presentation. J. Immunol. 157: 1819-1822.

    Google Scholar 

  • Stockinger, B.,Zal, T.,Zal, A., andGray, D. (1996). B cells solicit their own help from T cells. J. Exp. Med. 183: 891-899.

    Google Scholar 

  • Sucher, N. J.,Lipton, S. A., andDreyer, E. B. (1997). Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res. 37: 3483-3493.

    Google Scholar 

  • Weiner, H. L. (2001). Oral tolerance: Immune mechanisms and the generation of Th3-type TGF-betasecreting regulatory cells. Microbes. Infect. 3(11): 947-54.

    Google Scholar 

  • Yoles, E.,Hauben, E.,Palgi, O.,Agranov, E.,Gothilf, A.,Cohen, A.,Kuchroo, V.,Cohen, I. R.,Weiner, H., andSchwartz, M. (2001). Protective autoimmunity is a physiological response to CNS trauma. J. Neurosci. 21: 3740-3748.

    Google Scholar 

  • Yoles, E.,Muller, S., andSchwartz, M. (1997). NMDA-receptor antagonist protects neurons from secondary degeneration after partial optic nerve crush [published erratum appears in J. Neurotrauma. 1999 Apr;16(4):345]. J. Neurotrauma 14: 665-675.

    Google Scholar 

  • Yoles, E., andSchwartz, M. (1998). Degeneration of spared axons following partial white matter lesion: Implications for optic nerve neuropathies. Exp. Neurol. 153: 1-7.

    Google Scholar 

  • Yoles, E.,Wheeler, L. A., andSchwartz, M. (1999). Alpha2-adrenoreceptor agonists are neuroprotective in a rat model of optic nerve degeneration. Invest. Ophthalmol. Vis. Sci. 40: 65-73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, M. Harnessing the Immune System for Neuroprotection: Therapeutic Vaccines for Acute and Chronic Neurodegenerative Disorders. Cell Mol Neurobiol 21, 617–627 (2001). https://doi.org/10.1023/A:1015139718466

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015139718466

Navigation