Skip to main content
Log in

Glutamatergic components of the retrosplenial granular cortex in the rat

  • Published:
Journal of Neurocytology

Abstract

The ultrastructural characteristics, distribution and synaptic relationships of identified, glutamate-enriched thalamocortical axon terminals and cell bodies in the retrosplenial granular cortex of adult rats is described and compared with GABA-containing terminals and cell bodies, using postembedding immunogold immunohistochemistry and transmission electron microscopy in animals with injections of cholera toxin- horseradish peroxidase (CT-HRP) into the anterior thalamic nuclei. Anterogradely labelled terminals, identified by semi-crystalline deposits of HRP reaction product, were approximately 1 μm in diameter, contained round, clear synaptic vesicles, and established asymmetric (Gray type I) synaptic contacts with dendritic spines and small dendrites, some containing HRP reaction product, identifying them as dendrites of corticothalamic projection neurons. The highest densities of immunogold particles following glutamate immunostaining were found over such axon terminals and over similar axon terminals devoid of HRP reaction product. In serial sections immunoreacted for GABA, these axon terminals were unlabelled, whereas other axon terminals, establishing symmetric (Gray type II) synapses were heavily labelled. Cell bodies of putative pyramidal neurons, containing retrograde HRP label, were numerous in layers V–VI; some were also present in layers I–III. Most were overlain by high densities of gold particles in glutamate but not in GABA immunoreacted sections. These findings provide evidence that the terminals of projection neurons make synaptic contact with dendrites and dendritic spines in the ipsilateral retrosplenial granular cortex and that their targets include the dendrites of presumptive glutamatergic corticothalamic projection neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki, C., Venkatesan, C., Go, C. G., Mong, J. A. & Dawson, T. M. (1994) Cellular and subcellular localization of NMDA-R1 subunit immunoreactivity in the visual cortex of adult and neonatal rats. Journal of Neuroscience 14, 5202–5222.

    Google Scholar 

  • Berger, T. W., Milner, T. A., Swanson, G. W., Lynch, G. S. & Thompson, R. F. (1980) Reciprocal anatomical connections between anterior thalamus and cingulate-retrosplenial cortex in the rabbit. Brain Research 201, 411–417.

    Google Scholar 

  • Donovan, M. K. & Wyss, J. M. (1983) Evidence for some collateralization between cortical and diencephalic efferent axons of the rat subicular cortex. Brain Research 259, 181–192.

    Google Scholar 

  • Fagg, G. E. & Foster, A. C. (1983) Amino acid neurotransmitters and their pathways in the mammalian central nervous system. Neuroscience 9, 701–719.

    Google Scholar 

  • Finch, D. M., Derian, E. & Babb, T. (1984) Excitatory projection of the rat subicular complex to the cingulate cortex and synaptic integration with thalamic afferents. Brain Research 301, 25–37.

    Google Scholar 

  • Fonnum, F. (1984) Glutamate: A neurotransmitter in mammalian brain. Journal of Neurochemistry 42, 1–11.

    Google Scholar 

  • Gonzalo-Ruiz, A., Sanz, J. M., Morte, L. & Lieberman, A. R. (1997) Glutamate and aspartate immunoreactivity in the reciprocal projections between the anterior thalamic nuclei and the retrosplenial granular cortex in the rat. Brain Research Bulletin 42, 309–321.

    Google Scholar 

  • Gonzalo-Ruiz, A., Wang, B., Sanz, J. M., Campbell, G. & Lieberman, A. R. (1998) Glutamate inputs from the anterior thalamic nuclei to identified corticothalamic projection neurons in the retrosplenial cortex of the rat. Society for Neuroscience Abstracts 24, 1163.

    Google Scholar 

  • Herkenham, M. (1980) Laminar organization of thalamic projections to the rat neocortex. Science 207, 532–535.

    Google Scholar 

  • Hersch, S. M. & White, E. L. (1981) Thalamocortical synapses with corticothalamic projection neurones in mouse Sml cortex: Electron microscopic demonstration of a monosynaptic feedback loop. Neuroscience Letters 24, 207–210.

    Google Scholar 

  • Hicks, T. P., Kaneko, T., Metherate, R., Oka, J. I. & Stark, X. (1991) Amino acids as transmitters of synaptic excitation in neocortical sensory processes. Canadian Journal of Physiology and Pharmacology 69, 1099–1114.

    Google Scholar 

  • Hill, E., Kalloniatis, M. & Tan, S. S. (2000) Glutamate, GABA and precursor amino acids in adult mouse neocortex: Cellular diversity revealed by quantitative immunocytochemistry. Cerebral Cortex 10, 1132–1142.

    Google Scholar 

  • Horikawa, K., Kinjo, N., Stanley, L. C. & Powell, E. W. (1988) Topographic organization and collateralization of the projections of the anterior and laterodorsal thalamic nuclei to cingulate area 24 and 29 in the rat. Neuroscience Research 6, 31–44.

    Google Scholar 

  • Johnson, R. R. & Burkhalter, A. (1992) Evidence for excitatory amino acid neurotransmitters in the geniculocortical pathway and local projections within rat primary visual cortex. Experimental Brain Research 89, 20–30.

    Google Scholar 

  • Kaitz, S. S. & Robertson, R. T. (1981) Thalamic connections with the limbic cortex. II. Corticothalamic connections. Journal of Comparative Neurology 158, 319–337.

    Google Scholar 

  • Kharazia, V. K. & Weinberg, R. J. (1993) Glutamate in terminals of thalamocortical fibers in rat somatic sensory cortex. Neuroscience Letters 157, 162–166.

    Google Scholar 

  • Kharazia, V. K. & Weinberg, R. J. (1994) Glutamate in thalamic fibers terminating in layer I of primary sensory cortex. Journal of Neuroscience 14, 6021–6032.

    Google Scholar 

  • Kuroda, M., Yokofujita, J. & Murakami, K. (1998) An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus. Progress in Neurobiology 54, 417–458.

    Google Scholar 

  • Llewellyn-Smith, I. J., Phend, K. D., Minson, J. B., Pilowsky, P. M. & Chalmers, J. P. (1992) Glutamate-immunoreactive synapses on retrogradely labelled sympathetic preganglionic neurones in rat thoracic spinal cord. Brain Research 581, 67–80.

    Google Scholar 

  • Macchi, G. (1969) Introductory statement about thalamocortical connections. Archives Italiennes de Biologie 107, 547–569.

    Google Scholar 

  • Maxwell, D. J., Christie, W. M., Ottersen, O. P. & Storm-Mathisen, J. (1990) Terminals of group Ia primary afferent fibers in Clarke's column are enriched with L-glutamate-like immunoreactivity. Brain Research 510, 346–350.

    Google Scholar 

  • Meinecke, D. L. & Peters, A. (1987) GABA immunoreactive neurones in rat visual cortex. Journal of Comparative Neurology 261, 388–404.

    Google Scholar 

  • Mesulam, M. M. (1982) Tracing neural connections with horseradish peroxidase. In IBRO Handbook (edited by Mesulam, M. M.). Chichester: Wiley.

    Google Scholar 

  • Oda, S. (1997) Ultrastructure and distribution of corticothalamic fiber terminals from the posterior cingulate cortex and the presubiculum to the anteroventral thalamic nucleus of the rat. Brain Research Bulletin 42, 485–491.

    Google Scholar 

  • Ottersen, O. P. (1989) Quantitative electron microscopic immunocytochemistry of neuroactive amino acid. Anatomy and Embryology 180, 1–15.

    Google Scholar 

  • Ottersen, O. P. & Storm-Mathisen, J. (1986) Excitatory amino acid pathways in the brain. Advances in Experimental Medical Biology 203, 263–284.

    Google Scholar 

  • Ottersen, O. P., Fischer, B. & Storm-Mathisen, J. (1983) Retrograde transport of [H]3-aspartate in thalamocortical neurones. Neuroscience Letters 42, 19–24.

    Google Scholar 

  • Ottersen, O. P., Storm-Mathisen, J., Braham, J., Torp, R., Laake, J. & Gundersen, V. (1990) A quantitative electron microscopic immunocytochemical study of the distribution and synaptic handling of glutamate in rat hippocampus. Progress in Brain Research 83, 99–114.

    Google Scholar 

  • Paxinos, G. & Watson, C. (1986) The Rat Brain in Stereotaxic Coordinates. Sydney: Academic Press.

    Google Scholar 

  • Peters, A. & Saldanha, J. (1976) The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. III. Layer VI. Brain Research 105, 533–537.

    Google Scholar 

  • Petralia, R. S. & Wenthold, R. J. (1992) Light and electron immunocytochemical localization of AMPAselective glutamate receptors in the rat brain. Journal of Comparative Neurology 318, 329–325.

    Google Scholar 

  • Phend, K. D., Weinberg, R. J. & Rustioni, A. (1992) Techniques to optimize post-embedding single and double staining for amino acid neurotransmitters. Journal of Histochemistry and Cytochemistry 40, 1011–1020.

    Google Scholar 

  • Pirot, S., Therese, M. J., Glowinski, J. & Thierry, A. M. (1994) Anatomical and electrophysiologial evidence for an excitatory amino acid pathway from the thalamic mediodorsal nucleus to the prefrontal cortex in the rat. European Journal of Neuroscience 6, 1225–1234.

    Google Scholar 

  • Rinvik, E. & Ottersen, O. P. (1993) Terminals of subthalamonigral fibers are enriched with glutamate-like immunoreactivity: An electron microscopic immunogold analysis in the cat. Journal of Chemical Neuroanatomy 6, 19–30.

    Google Scholar 

  • Robertson, R. T. & Kaitz, S. S. (1981) Thalamic connections with limbic cortex. I. Thalamocortical projections. Journal of Comparative Neurology 195, 501–525.

    Google Scholar 

  • Royce, G. J. (1983) Cells of origin of corticothalamic projections upon the centromedian and parafascicular nuclei in the cat. Brain Research 258, 11–21.

    Google Scholar 

  • Rustioni, A., Battaglia, G., de Biasi, S. & Giuffrida, R. (1988) Neuromediators in somatosensory thalamus: An immunocytochemical overview. In Cellular Thalamic Mechanisms (edited by Bentivoglio M. & Spreafico, R.) pp. 311–320. Amsterdam: Elsevier.

    Google Scholar 

  • Seki, M. & Zyo, K. (1984) Anterior thalamic afferents from the mammillary body and the limbic cortex in the rat. Journal of Comparative Neurology 229, 242–256.

    Google Scholar 

  • Shibata, H. (1993) Efferent projection from the anterior thalamic nuclei to the cingulate cortex in the rat. Journal of Comparative Neurology 330, 533–542.

    Google Scholar 

  • Shibata, H. (1998) Organization of projections of rat retrosplenial cortex to the anterior thalamic nuclei. European Journal of Neuroscience 10, 3210–3219.

    Google Scholar 

  • Sikes, R. W. & Vogt, B. A. (1987) Afferent connections of anterior thalamus in rats: Sources and association with muscarinic acetylcholine receptors. Journal of Comparative Neurology 256, 538–551.

    Google Scholar 

  • Somogyi, P., Halasy, K., Somogyi, J., Stormmathisen, J. & Ottersen, O. P. (1986) Quantification of immunogold labelling reveals enrichment of glutamate in mossy and parallel fiber terminals in cat cerebellum. Neuroscience 19, 1045–1051.

    Google Scholar 

  • Sripanidkulchai, K. & Wyss, J. M. (1986) Thalamic projections to retrosplenial cortex in the rat. Journal of Comparative Neurology 254, 143–165.

    Google Scholar 

  • Storm-Mathisen, J. & Ottersen, O. P. (1990) Immunocytochemistry of glutamate at the synaptic level. Journal of Histochemistry and Cytochemistry 38, 1733–1743.

    Google Scholar 

  • Tsumoto, T. (1990) Excitatory amino acid transmitters and their receptors in neural circuits of the cerebral cortex. Neuroscience Research 9, 79–102.

    Google Scholar 

  • Valtschanoff, J. G., Phend, K. D., Bernardi, P. S., Weinberg, R. J. & Rustioni, A. (1994) Amino acid immunocytochemistry of primary afferent terminals in the rat dorsal horn. Journal of Comparative Neurology 346, 237–252.

    Google Scholar 

  • van Groen, T. & Wyss, J. M. (1990a) Connection of the retrosplenial granular cortex in the rat. Journal of Comparative Neurology 300, 593–606.

    Google Scholar 

  • van Groen, T. & Wyss, J. M. (1990b) The postsubicular cortex in the rat: Characterization of the fourth region of the subicular cortex and its connections. Brain Research 529, 165–177.

    Google Scholar 

  • van Groen, T. & Wyss, J. M. (1992) Connections of the retrosplenial dysgranular cortex in the rat. Journal of Comparative Neurology 315, 200–216.

    Google Scholar 

  • van Groen, T. & Wyss, J. M. (1995) Projections from the anterodorsal and anteroventral nucleus of the thalamus to the limbic cortex in the rat. Journal of Comparative Neurology 358, 584–604.

    Google Scholar 

  • van Groen, T., Brent, A. & Wyss, J. M. (1993) Interconnections between the thalamus and retrosplenial cortex in the rodent brain. In Neurobiology of Cingulate Cortex and Limbic Thalamus (edited by Vogt, B. A. & Gabriel, M.) pp. 121–150. Boston: Birkhauser.

    Google Scholar 

  • Vogt, B. A. (1991) The role of layer I in cortical function. In Cerebral Cortex (edited by Peters, A. & Jones, E. G.) Vol. 9, pp. 49–80. New York: Plenum Press.

    Google Scholar 

  • Vogt, B. A. (1993) Structural organization of cingulate cortex: Areas, neurons, and somatodendritic transmitter receptors. In Neurobiology of Cingulate Cortex and Limbic Thalamus (edited by Vogt, B. A. & Gabriel, M.). Boston: Birkhäuser.

    Google Scholar 

  • Vogt, B. A. & Peters, A. (1981) Form and distribution of neurons in rat cingulate cortex: Areas 32, 24, and 29. Journal of Comparative Neurology 195, 603–625.

    Google Scholar 

  • Vogt, B. A., Rosene, D. L. & Peters, A. (1981) Synaptic terminals of thalamic and callosal afferents in cingulate cortex of the rat. Journal of Comparative Neurology 201, 265–283.

    Google Scholar 

  • Wang, B., Gonzalo-Ruiz, A., Sanz, J. M., Campbell, G. & Lieberman, A. R. (1999a) Immunoelectron microscopic study of γ-aminobutyric acid inputs to identified thalamocortical projection neurons in the anterior thalamus of the rat. Experimental Brain Research 126, 369–382.

    Google Scholar 

  • Wang, B., Gonzalo-Ruiz, A., Morte, L., Campbell, G. & Lieberman, A. R. (1999b) Immunoelectron microscopic study of glutamate inputs from the retrosplenial granular cortex to identified thalamocortical projection neurons in the anterior thalamus of the rat. Brain Research Bulletin 50, 63–76.

    Google Scholar 

  • Warr, W. B., de Olmos, J. S. & Heimer, L. (1981) Horseradish peroxidase. The basic procedure. In Neurochemical Tract-Tracing Methods (edited by Heimer, L. & Robards, M. J.) pp. 207–261. NewYork: Plenum Press.

    Google Scholar 

  • Watkins, J. C. & Evans, R. H. (1981) Excitatory amino acid neurotransmitters. Annual Review of Pharmacology and Toxicology 21, 165–204.

    Google Scholar 

  • Weinberg, R. J. & van Eyck, S. L. C. (1991) A tetramethyl benzidine/tungstate reaction for horseradish peroxidase histochemistry. Journal of Histochemistry and Cytochemistry 39, 1143–1148.

    Google Scholar 

  • Zhang, H., Walberg, F., Laake, J. H., Meldrum, B. S. & Ottersen, O. P. (1990) Aspartate-like and glutamate-like immuno reactivities in the inferior olive and climbing fiber system: Alight microscopic and semiquantitative electron microscopic study in rat and baboon (Papio anubis). Neuroscience 38, 61–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.R. Lieberman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Gonzalo-Ruiz, A., Sanz, J. et al. Glutamatergic components of the retrosplenial granular cortex in the rat. J Neurocytol 30, 427–441 (2002). https://doi.org/10.1023/A:1015069727171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015069727171

Keywords

Navigation