Skip to main content
Log in

Inhibition of P-Glycoprotein by D-α-Tocopheryl Polyethylene Glycol 1000 Succinate (TPGS)

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate whether d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) functions as an inhibitor of P-glycoprotein (P-gp), the multidrug resistance transporter.

Methods. Two assays were used to measure the function of TPGS on P-gp function. First, we examined the ability of TPGS to modulate the cytotoxicity of established, cytotoxic, P-glycoprotein substrates. Parental NIH 3T3 cells and NIH 3T3 cells transfected with the human MDR1 cDNA (G185) were exposed to doxorubicin, paclitaxel, colchicine, vinblastine and 5-fluorouracil (5FU) in the presence or absence of TPGS. Cytotoxicity was assessed with the MTT assay. Second, polarized transport of the P-gp substrates rhodamine 123 (R123), paclitaxel and vinblastine was measured using the human intestinal HCT-8 and Caco-2 cell lines grown in Transwell dishes. Drug flux was measured by liquid scintillation counting or fluorescence spectroscopy of the media.

Results. G185 cells were 27−135 fold more resistant to the cytotoxic drugs doxorubicin, vinblastine, colchicine and paclitaxel than the parental NIH 3T3 cells. In contrast 5FU, which is not a P-gp substrate, is equally cytotoxic to parental and G185 cells. Co-administration of TPGS enhanced the cytotoxicity of doxorubicin, vinblastine, paclitaxel, and colchicine in the G185 cells to levels comparable to the parental cells. TPGS did not increase the cytotoxicity of 5FU in the G185 cells. Using a polarized epithelial cell transport assay, TPGS blocked P-gp mediated transport of Rl 23 and paclitaxel in a dose responsive manner.

Conclusions. These data demonstrate that TPGS acts as a reversal agent for P-glycoprotein mediated multidrug resistance and inhibits P-gp mediated drug transport. These results suggest that enhanced oral bioavailability of drugs co-administered with TPGS may, in part, be due to inhibition of P-glycoprotein in the intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. J. Goldstein. MDR1 gene expression in solid tumors. Eur. J. Cancer. 32A:1039–1050 (1996).

    Google Scholar 

  2. J. A. Endicott and V. Ling. The biochemistry of P-glycoprotein mediated multidrug resistance. Ann. Rev. Biochem. 58:137–171 (1989).

    Google Scholar 

  3. M. M. Gottesman. How cancer cells evade chemotherapy: Sixteenth Richard and Hinda Rosenthal foundation award lecture. Cancer Res. 53:747–754 (1993).

    Google Scholar 

  4. M. M. Gottesman and I. Pastan. The multidrug transporter, a double edged sword. J. Biol. Chem. 263:12163–12166 (1988).

    Google Scholar 

  5. M. M. Gottesman and I. Pastan. Biochemistry of multidrug resistance mediated by the multidrug transporter. Ann. Rev. Biochem. 62:385–427 (1993).

    Google Scholar 

  6. S. S. Thorgeirsson, J. A. Silverman, T. W. Gant, and P. A. Marino. Multidrug resistance gene family and chemical carcinogens. Pharmacol. Ther. 49:283–292 (1991).

    Google Scholar 

  7. P. Borst, A. H. Schinkel, J. J. M. Smit, E. Wagenaar, L. Van Deemter, A. J. Smith, W. H. M. Eijdems, F. Baas, and G. J. R. Zaman. Classical and novel forms of multidrug resistance and the physiological functions of P-glycoproteins in mammals. Pharmacol. Ther. 60:289–299 (1993).

    Google Scholar 

  8. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Cellular localization of the multidrug resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 84:7735–7738 (1987).

    Google Scholar 

  9. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: Evidence for localization in brain capillaries and crossreactivity on one antibody with a muscle protein. J. Histochem. Cytochem. 37:159–164 (1989).

    Google Scholar 

  10. B. L. Lum and M. P. Gosland. MDR expression in normal tissues. Hematol. Oncol. North Am. 9:319–336 (1995).

    Google Scholar 

  11. A. H. Schinkel, J. J. M. Smit, O. van Tellingen, J. H. Beijnen, E. Wagenaar, L. van Deemter, C. A. A. M. Mol, M. A. van der Valk, E. C. Robanus-Maandag, H. P. J. te Riele, A. J. M. Berns, and P. Borst. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502 (1994).

    Google Scholar 

  12. J. van Asperen, O. van Tellingen, A. Sparreboom, A. H. Schinkel, P. Borst, W. J. Nooijen, and J. H. Beijnen. Enhanced oral bioavailability of paclitaxel in mice treated with the P-glycoprotein blocker SDZ PSC 833. Br. J. Cancer 76:1181–1183 (1997).

    Google Scholar 

  13. J. van Asperen, A. H. Schinkel, J. H. Beijnen, W. J. Nooijen, P. Borst, and O. van Tellingen. Altered pharmacokinetics of vinblastine in mdr1a P-glycoprotein-deficient mice. J. Natl. Cancer Inst. 88:994–999 (1996).

    Google Scholar 

  14. A. H. Schinkel, U. Mayer, E. Wagenaar, C. A. A. M. Mol, L. van Deemter, J. J. M. Smit, M. A. van der Valk, A. C. Voordouw, H. Spits, O. van Tellingen, J. M. J. M. Zijlmans, W. E. Fibbe, and P. Borst. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug transporting) P-glycoproteins. Proc. Natl. Acad. Sci. USA 94:4028–4033 (1997).

    Google Scholar 

  15. S.-F. Su and J.-D. Huang. Inhibition of the intestinal digoxin absorption and exsorption by quinidine. Drug Metab. Dispos. 24:142–147 (1996).

    Google Scholar 

  16. B.-L. Leu and J.-ding Huang. Inhibition of intestinal P-glycoprotein and effects on etoposide absorption. Cancer Chemother. Pharmacol. 35:432–436 (1995).

    Google Scholar 

  17. V. J. Wacher, C.-Y. Wu, and L. Z. Benet. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: Implications for drug delivery and activity in cancer chemotherapy. Mol. Carcin. 13:129–134 (1995).

    Google Scholar 

  18. V. J. Wacher, L. Salphati, and L. Z. Benet. Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv. Drug Del. Rev. 20:99–112 (1996).

    Google Scholar 

  19. V. J. Wacher, J. A. Silverman, Y. Zhang, and L. Z. Benet. Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J. Pharm. Sci. 87:1322–1330 (1998).

    Google Scholar 

  20. J. P. Boudreaux, D. H. Hayes, S. Mizrahi, P. Maggiore, J. Blazek, and D. Dick. Use of water-soluble liquid vitamin E to enhance cyclosporine absorption in children after liver transplant. Transplant. Proc. 25:1875 (1993).

    Google Scholar 

  21. R. J. Sokol, K. E. Johnson, F. M. Karrer, M. R. Narkewicz, D. Smith, and I. Kam. Improvement of cyclosporin absorption in children after liver transplantation by means of water-soluble vitamin E. Lancet. 338:212–215 (1991).

    Google Scholar 

  22. T. Chang, L. Z. Benet, and M. F. Hebert. The effect of water-soluble vitamin E on cyclosporine pharmacokinetics in healthy volunteers. Clin. Pharmacol. Ther. 59:1–7 (1996).

    Google Scholar 

  23. C. O. Cardarelli, I. Aksentijevich, I. Pastan, and M. M. Gottesman. Differential effects of P-glycoprotein inhibitors on NIH3T3 cells transfected with wild-type (G185) or mutant (V185) multidrug transporters. Cancer Res. 55:1086–1091 (1995).

    Google Scholar 

  24. T. Mosmann. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63 (1983).

    Google Scholar 

  25. M. B. Hansen, S. E. Nielsen, and K. Berg. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119:203–210 (1989).

    Google Scholar 

  26. J. Hunter, B. H. Hirst, and N. L. Simmons. Epithelial secretion of vinblastine by human intestinal adenocarcinoma cell (HCT-8 and T84) layers expressing P-glycoprotein. Br. J. Cancer 64:437–444 (1991).

    Google Scholar 

  27. A. E. Kim, J. M. Dintaman, D. S. Waddell, and J. A. Silverman. Saquinavir, an HIV protease inhibitor, is transported by P-glycoprotein. J. Pharmacol. Exp. Ther. 286:1439–1445 (1998).

    Google Scholar 

  28. T. W. Gant, J. A. Silverman, H. C. Bisgaard, R. K. Burt, P. A. Marino, and S. S. Thorgeirsson. Regulation of 2-acetylaminofluorene and 3-methylcholanthrene mediated induction of mdr and cytochrome P450IA gene family expression in primary hepatocyte cultures and rat liver. Mol. Carcin. 4:499–509 (1991).

    Google Scholar 

  29. E. Georges, G. Bradley, J. Gariepy, and V. Ling. Detection of P-glycoprotein isoforms by gene specific monoclonal antibodies. Proc. Natl. Acad. Sci. USA 87:152–156 (1990).

    Google Scholar 

  30. S. J. Currier, S. E. Kane, M. C. Willingham, C. O. Cardarelli, I. Pastan, and M. M. Gottesman. Identification of residues in the first cytoplasmic loop of P-glycoprotein involved in the function of chimeric human MDR1-MDR2 transporters. J. Biol. Chem. 267:25153–25159 (1992).

    Google Scholar 

  31. E. Santoni-Rugiu and J. A. Silverman. Functional characterization of the rat mdr1b encoded P-glycoprotein: not all inducing agents are substrates. Carcinogenesis 18:2255–2263 (1997).

    Google Scholar 

  32. S. V. Egudina, T. P. Stromskaya, E. A. Frolova, and A. A. Stravrovskaya. Early steps of the P-glycoprotein in cell cultures studied with vital fluorchrome. FEBS Lett. 329:63–66 (1993).

    Google Scholar 

  33. P. M. Chaudhary, E. B. Metchener, and I. B. Roninson. Expression and activity of the multidrug resistance P-glycoprotein in human peripheral blood lymphocytes. Blood 80:2735–2739 (1992).

    Google Scholar 

  34. J. Hunter, M. A. Jepson, T. Tsuruo, N. L. Simmons, and B. H. Hirst. Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. J. Biol. Chem. 268:14991–14997 (1993).

    Google Scholar 

  35. P. Artursson. Epithelial transport of drugs in cell culture.I: A model for studying the passive diffusion of drugs over intestinal absorbtive (Caco-2) cells. J. Pharm. Sci. 79:476–482 (1990).

    Google Scholar 

  36. K. L. Audus, R. L. Bartel, I. J. Hidalgo, and R. T. Borchardt. The use of cultured epithelial and endothelial cells for drug transport and metabolism studies. Pharm. Res. 7:435–451 (1990).

    Google Scholar 

  37. G. H. Mickisch, G. T. Merlino, H. Galski, M. M. Gottesman, and I. Pastan. Transgenic mice that express the human multidrug-resistance gene in bone marrow enable a rapid identification of agents that reverse drug resistance. Proc. Natl. Acad. Sci. USA 88:547–551 (1991).

    Google Scholar 

  38. M. M. Nerurkar, P. S. Burton, and R. T. Borchardt. The use of surfactants to enhance the permeability of peptides through Caco-2 cells by inhibition of an apically polarized efflux system. Pharm. Res. 13:528–534 (1996).

    Google Scholar 

  39. D. S. Chervinsky, M. L. Brecher, and M. J. Hoelcle. Cremophor-EL enhances taxol efficacy in a multi-drug resistant C1300 neuroblastoma cell line. Anticancer Res. 13:93–96 (1993).

    Google Scholar 

  40. L. E. Buckingham, M. Balasuramanian, R. M. Emanuele, K. E. Clodfelter, and J. S. Coon. Comparison of Solutol HS15, Cremophor EL and novel ethoxylated fatty acid surfactants as multidrug resistance modification agents. Int. J. Cancer 62:436–442 (1995).

    Google Scholar 

  41. D. M. Woodcock, S. Jefferson, M. E. Linsenmeyer, P. J. Crowther, G. M. Chojnowski, B. Williams, and I. Bertoncello. Reversal of the multidrug resistance phenotype with Cremophor EL, a common vehicle for water-insoluble vitamins and drugs. Cancer Res. 50:4199–4203 (1990).

    Google Scholar 

  42. L. Webster, M. Linsenmeyer, M. Millward, C. Morton, J. Bishop, and D. Woodcock. Measurement of cremophor-el following taxol: Plasma levels sufficient to reverse drug exclusion mediated by the multidrug resistant phenotype. J. Natl. Cancer Inst. 85:1685–1690 (1993).

    Google Scholar 

  43. E. V. Batrakova, H. Y. Han, D. W. Miller, and A. V. Kabanov. Effects of pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells. Pharm. Res. 15:1525–1532 (1998).

    Google Scholar 

  44. S. H. Pan, R. R. J. Lopez, L. S. Sher, A. L. Hoffman, L. G. Podesta, L. Makowaka, and P. Rosenthal. Enhanced oral cyclosporine absorption with water-soluble vitamine E early after liver transplantation. Pharmacother. 16:59–65 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Silverman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dintaman, J.M., Silverman, J.A. Inhibition of P-Glycoprotein by D-α-Tocopheryl Polyethylene Glycol 1000 Succinate (TPGS). Pharm Res 16, 1550–1556 (1999). https://doi.org/10.1023/A:1015000503629

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015000503629

Navigation