Skip to main content
Log in

A Spiking Neuron Model for Binocular Rivalry

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We present a biologically plausible model of binocular rivalry consisting of a network of Hodgkin-Huxley type neurons. Our model accounts for the experimentally and psychophysically observed phenomena: (1) it reproduces the distribution of dominance durations seen in both humans and primates, (2) it exhibits a lack of correlation between lengths of successive dominance durations, (3) variation of stimulus strength to one eye influences only the mean dominance duration of the contralateral eye, not the mean dominance duration of the ipsilateral eye, (4) increasing both stimuli strengths in parallel decreases the mean dominance durations. We have also derived a reduced population rate model from our spiking model from which explicit expressions for the dependence of the dominance durations on input strengths are analytically calculated. We also use this reduced model to derive an expression for the distribution of dominance durations seen within an individual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275: 220–223.

    Google Scholar 

  • Andrews TJ, Purves D (1997) Similarities in normal and binocularly rivalrous viewing. Proc. Natl. Acad. Sci. USA 94: 9905–9908.

    Google Scholar 

  • Blake R (1989) A neural theory of binocular vision. Psychol. Rev. 96: 145–167.

    Google Scholar 

  • Borsellino A, De Marco A, Allazetta A, Rinesi S, Bartolini B (1972) Reversal time distributions in the perception of visual ambiguous stimuli. Kybernetik 10: 139–144.

    Google Scholar 

  • Bossink CJH, Stalmeier PFM, De Weert CMM (1993) A test of Levelt's second proposition for binocular rivalry. Vision Res. 33: 1413–1419.

    Google Scholar 

  • Carlson TA, He S (2000) Visible binocular beats from invisible monocular stimuli during binocular rivalry. Curr. Biol. 10(17): 1055–1058.

    Google Scholar 

  • Dayan P (1998) A hierarchical model of binocular rivalry. Neural Comput. 10: 1119–1135.

    Google Scholar 

  • Ermentrout GB (1998) Neural networks as spatio-temporal patternforming systems. Rep. Prog. Phys. 61: 353–430.

    Google Scholar 

  • Fox R, Herrmann J (1967) Stochastic properties of binocular rivalry alternations. Percept Psychophys. 2: 432–436.

    Google Scholar 

  • Gomez C, Argandona ED, Solier RG, Angulo JC, Vazquez M(1995) Timing and competition in networks representing ambiguous figures. Brain Cogn. 29: 103–114.

    Google Scholar 

  • Gutkin BS, Laing CR, Colby CL, Chow CC, Ermentrout GB (2001) Turning on and off with excitation: The role of spike timing in asynchrony and synchrony in sustained neural activity. J. Comput. Neurosci. 11(2).

  • Hansel D, Sompolinsky H (1998) Modeling feature selectivity in local cortical circuits. In: C Koch, I Segev, eds. Methods in Neuronal Modeling (2nd ed.). MIT Press, Cambridge, MA.

    Google Scholar 

  • Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J. Neurophysiol. 68(4): 1373–1383.

    Google Scholar 

  • Kalarickal GJ, Marshall JA (2000) Neural model of temporal and stochastic properties of binocular rivalry. Neurocomput. 32: 843–853.

    Google Scholar 

  • Kovacs I, Papathomas TV, Yang M, Feher A (1996) When the brain changes its mind: Interocular grouping during binocular rivalry. Proc. Natl. Acad. Sci. USA 93: 15508–15511.

    Google Scholar 

  • Laing CR, Chow CC (2001) Stationary bumps in networks of spiking neurons. Neural Comput. 13: 1473–1494.

    Google Scholar 

  • Lee S-H, Blake R (1999) Rival ideas about binocular rivalry. Vision Res. 39: 1447–1454.

    Google Scholar 

  • Lehky SR (1988) An astable multivibrator model of binocular rivalry. Perception 17: 215–228.

    Google Scholar 

  • Lehky SR (1995) Binocular rivalry is not chaotic. Proc. R. Soc. Lond. B Biol. Sci. 259: 71–76.

    Google Scholar 

  • Leopold DA, Logothetis NK (1996) Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature 379: 549–553.

    Google Scholar 

  • Leopold DA, Logothetis NK (1999) Multistable phenomena: Changing views in perception. Trends Cogn. Sci. 3(7): 254–264.

    Google Scholar 

  • Levelt WJM (1968) On Binocular Rivalry. Minor Series 2. Psychological Studies. The Hague: Mouton.

    Google Scholar 

  • Logothetis NK (1998) Single units and conscious vision. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353: 1801–1818.

    Google Scholar 

  • Logothetis NK, Leopold DA, Sheinberg DL (1996) What is rivalling during binocular rivalry? Nature 380: 621–624.

    Google Scholar 

  • Logothetis NK, Schall JD (1989) Neuronal correlates of subjective visual perception. Science 245: 761–763.

    Google Scholar 

  • Lumer ED (1998) A neural model of binocular integration and rivalry based on the coordination of action-potential timing in primary visual cortex. Cereb. Cortex 8: 553–561.

    Google Scholar 

  • Lumer ED, Friston KJ, Rees G (1998) Neural correlates of perceptual rivalry in the human brain. Science 280: 1930–1934.

    Google Scholar 

  • Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. USA 95: 5323–5328.

    Google Scholar 

  • McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol. 68(4): 1384–1400.

    Google Scholar 

  • McCormick DA, Williamson A (1989) Convergence and divergence of neurotransmitter action in human cerebral cortex. Proc. Natl. Acad. Sci. USA 86: 8098–8102.

    Google Scholar 

  • Mueller TJ (1990) A physiological model of binocular rivalry. Vis. Neurosci. 4: 63–73.

    Google Scholar 

  • Mueller TJ, Blake R (1989) A fresh look at the temporal dynamics of binocular rivalry. Biol. Cyber. 61: 223–232.

    Google Scholar 

  • Ngo TT, Miller SM, Liu GB, Pettigrew JD (2000) Binocular rivalry and perceptual coherence. Curr. Biol. 10(4): R134–R136.

    Google Scholar 

  • O'shea RP (1998) Effects of orientation and spatial frequency on monocular and binocular rivalry. In: N Kasabov, R Kozma, K Ko, R O'shea, G Coghill, T Gedeon, eds. Proceedings of the Fourth International Conference on Neural Information Processing and Intelligent Information Systems. Springer-Verlag, Singapore. pp. 67–70.

    Google Scholar 

  • O'shea RP, Govan DG, Sekuler R (1997) Blur and contrast as pictorial depth cues. Perception 26: 599–612.

    Google Scholar 

  • Pettigrew JD, Miller SM (1998) A “sticky” interhemispheric switch in bipolar disorder? Proc. R. Soc. Lond. B Biol. Sci. 265: 2141–2148.

    Google Scholar 

  • Racicot DM, Longtin A (1997) Interspike interval attractors from chaotically driven neuron models. Physica D 104: 184–204.

    Google Scholar 

  • Rock I, Hall S, Davis J (1994) Why do ambiguous figures reverse? Acta Psychol. 87: 33–57.

    Google Scholar 

  • Sheinberg DL, Logothetis NK (1997) The role of temporal cortical areas in perceptual organization. Proc. Natl. Acad. Sci. USA 94: 3408–3413.

    Google Scholar 

  • Walker P (1975) Stochastic properties of binocular rivalry. Percept Psychophys. 18: 467–473.

    Google Scholar 

  • Walker P (1976) The perceptual fragmentation of unstabilized images. Q. J. Exp. Psychol. 28: 35–45.

    Google Scholar 

  • Wang XJ (1999) Synaptic basis of cortical persistent activity: The importance of NMDA receptors to working memory. J. Neurosci. 19(21): 9587–9603.

    Google Scholar 

  • Wilson HR, Blake R, Lee SH (2001) Dynamics of travelling waves in visual perception. Nature 412: 907–910.

    Google Scholar 

  • Wilson HR, Krupa B, Wilkinson F (2000) Dynamics of perceptual oscillations in form vision. Nat. Neurosci. 3(2): 170–176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laing, C.R., Chow, C.C. A Spiking Neuron Model for Binocular Rivalry. J Comput Neurosci 12, 39–53 (2002). https://doi.org/10.1023/A:1014942129705

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014942129705

Navigation