Skip to main content
Log in

Insertion-deletion polymorphisms in 3′ regions of maize genes occur frequently and can be used as highly informative genetic markers

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Single-nucleotide polymorphisms (SNPs) are the most frequent variations in the genome of any organism. SNP discovery approaches such as resequencing or data mining enable the identification of insertion deletion (indel) polymorphisms. These indels can be treated as biallelic markers and can be utilized for genetic mapping and diagnostics. In this study 655 indels have been identified by resequencing 502 maize (Zea mays) loci across 8 maize inbreds (selected for their high allelic variation). Of these 502 loci, 433 were polymorphic, with indels identified in 215 loci. Of the 655 indels identified, single-nucleotide indels accounted for more than half (54.8%) followed by two- and three-nucleotide indels. A high frequency of 6-base (3.4%) and 8-base (2.3%) indels were also observed. When analysis is restricted to the B73 and Mo17 genotypes, 53% of the loci analyzed contained indels, with 42% having an amplicon size difference. Three novel miniature inverted-repeat transposable element (MITE)-like sequences were identified as insertions near genes. The utility of indels as genetic markers was demonstrated by using indel polymorphisms to map 22 loci in a B73 × Mo17 recombinant inbred population. This paper clearly demonstrates that the resequencing of 3′ EST sequence and the discovery and mapping of indel markers will position corresponding expressed genes on the genetic map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avramova, Z., Tikhonov, A.P., Chen, M. and Bennetzen, J.L. 1998. Matrix attachment regions and structural collinearity in the genomes of two grass species. Nucl. Acids Res. 26: 761-767.

    Google Scholar 

  • Buckner, B., Miguel, P.S., Janick-Buckner, D. and Bennetzen, J.L. 1996. The y1 gene of maize codes for phytoene synthase. Genetics 143: 479-488.

    Google Scholar 

  • Bureau, T.E. and Wessler, S.R. 1992. Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4: 1283-1294.

    Google Scholar 

  • Bureau, T.E. and Wessler, S.R. 1994. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc. Natl. Acad. Sci. USA 91: 1411-1415.

    Google Scholar 

  • Cardle, L., Ramsay, L., Milbourne, D., Macaulay, M., Marshall, D. and Waugh, R. 2000. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156: 847-854.

    Google Scholar 

  • Casa, A.M., Brouwer, C., Nagel, A., Wang, L., Zhang, Q., Kresovich, S. and Wessler, S.R. 2000. The MITE family heartbreaker (Hbr): molecular markers in maize. Proc. Natl. Acad. Sci. USA 97: 10083-10089.

    Google Scholar 

  • Coe, E.H. Jr., Neuffer, M.G. and Hoisington, D.A. 1988. The genetics of corn. In: G.F. Sprague and J.W. Dudley (Eds) Corn and Corn Improvement, American Society of Agronomy, Madison, WI, pp. 81-258.

    Google Scholar 

  • Ewing, B. and Green, P. 1998. Base calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8: 186-194.

    Google Scholar 

  • Ewing, B., Hillier, L., Wendl, M.C. and Green, P. 1998. Base calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 175-185.

    Google Scholar 

  • Gardiner, J.M., Coe, E.H., Melia-Hancock, S., Hoisington, D.A. and Chao, S. 1993. Development of a core RFLP map in maize using an immortalized F2 population. Genetics 134: 917-980.

    Google Scholar 

  • Gordon, D., Abajian, C. and Green, P. 1998. Consed: a graphical tool for sequence finishing. Genome Res. 8: 195-202.

    Google Scholar 

  • Isaksson, A., Landegren, U., Syvanen, A.C., Bork, P., Stein, C., Ortigao, F. and Brookes, A.J. 2000. Discovery, scoring and utilization of human single nucleotide polymorphisms: a multidisciplinary problem. Eur. J. Hum. Genet. 8: 154-156.

    Google Scholar 

  • Jones, C.J., Edwards, K.J., Castaglione, S., Winfield, M.O., Sala, F., van de Wiel, C., Bredemeijer, G., Vosman, B., Matthes, M., Daly, A., Brettschneider, R., Bettini, P., Buiatti, M., Maestri, E., Malcevschi, A., Marmiroli, N., Aert, R., Volckaert, G., Rueda, J., Linacero, R., Vazquez, A. and Karp, A. 1997. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol. Breed. 3: 381-390.

    Google Scholar 

  • Landegren, U., Nilsson, M. and Kwok, P.Y. 1998. Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Res. 8: 769-776.

    Google Scholar 

  • Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E. and Newburg, L. 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181.

    Google Scholar 

  • mdb/mdb3/+Panel+of+Stocks/235384.

  • Levinson, G. and Gutman, G.A. 1987. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4: 203-221.

    Google Scholar 

  • Li, W.-H. 1997. Molecular Evolution. Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  • Marshall, D.R. and Allard, R.W. 1970. Isozyme polymorphisms in natural populations of Avena fatua and Avena barbata. Heredity 25: 373-382.

    Google Scholar 

  • Morgante, M. and Olivieri, A.M. 1993. PCR-amplified microsatellites as markers in plant genetics. Plant J. 3: 175-182.

    Google Scholar 

  • Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70: 3321-3323.

    Google Scholar 

  • Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. and Rafalski, A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225-238.

    Google Scholar 

  • software/other/primer3.html.

  • Senior, L., Murphy, J.P., Goodman, M.M. and Stuber, C.W. 1998. Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci. 38: 1088-1098.

    Google Scholar 

  • Senior, M.L. and Heun, M. 1993. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 36: 884-889.

    Google Scholar 

  • Smith, J.S.C., Chin, E., Shu, H., Smith, O.S., Wall, S.J., Senior, L., Mitchell, S., Kresovich, S. and Ziegle, J. 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L): comparisons with data from RFLPs and pedigree. Theor. Appl. Genet. 95: 163-173.

    Google Scholar 

  • Taramino, G. and Tingey, S. 1996. Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39: 277-287.

    Google Scholar 

  • Tarchini, R., Biddle, P., Wineland, R., Tingey, S. and Rafalski, A. 2000. The complete sequence of 340 kb of DNA around the rice Adh1-adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 12: 381-391.

    Google Scholar 

  • Tikhonov, A.P., San Miguel, P.J., Nakajima, Y., Gorenstein, N.D., Bennetzen, J.L. and Avramova, Z. 1999. Collinearity and its exceptions in orhologous adh regions of maize and sorghum. Proc. Natl. Acad. Sci. USA 96: 7409-7414.

    Google Scholar 

  • Wang, D.G., Fan, J.B., Siao, C.J., Berno, A., Young, P., Sapolsky, R., Ghandour, G., Perkins, N., Winchester, E., Spencer, J., Kruglyak, L., Stein, L., Hsie, L., Topaloglou, T., Hubbell, E., Robinson, E., Mittmann, M., Morris, M.S., Shen, N., Kilburn, D., Rioux, J., Nusbaum, C., Rozen, S., Hudson, T.J. and Lander, E.S. 1998. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280: 1077-1082.

    Google Scholar 

  • Weber, D. and Helentjaris, T. 1989. Mapping RFLP loci in maize using B-A translocations. Genetics 121: 583-590.

    Google Scholar 

  • Weber, S.R., Bureau, T.E. and White, S.E. 1995. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev. 5: 814-821.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattramakki, D., Dolan, M., Hanafey, M. et al. Insertion-deletion polymorphisms in 3′ regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol Biol 48, 539–547 (2002). https://doi.org/10.1023/A:1014841612043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014841612043

Navigation