Skip to main content
Log in

Mathematical Modeling of Ultraviolet Germicidal Irradiation for Air Disinfection

  • Published:
Quantitative Microbiology

Abstract

A comprehensive treatment of the mathematical basis for modeling the disinfection process for air using ultraviolet germicidal irradiation (UVGI). A complete mathematical description of the survival curve is developed that incorporates both a two stage inactivation curve and a shoulder. A methodology for the evaluation of the three-dimensional intensity fields around UV lamps and within reflective enclosures is summarized that will enable determination of the UV dose absorbed by aerosolized microbes. The results of past UVGI studies on airborne pathogens are tabulated. The airborne rate constant for Bacillus subtilis is confirmed based on results of an independent test. A re-evaluation of data from several previous studies demonstrates the application of the shoulder and two-stage models. The methods presented here will enable accurate interpretation of experimental results involving aerosolized microorganisms exposed to UVGI and associated relative humidity effects

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • R.L. Abshire, H. Dunton, Applied and Environmental Microbiology 41, 1419–1423 (1981).

    Google Scholar 

  • A. Anellis, N. Grecz, D. Berkowitz, Applied Microbiology 13, 397–401 (1965).

    Google Scholar 

  • S.C. Antopol, P.D. Ellner, Applied and Environmental Microbiology 38, 347–348 (1979).

    Google Scholar 

  • A. Asthana, R.W. Tuveson, International Journal of Plant Science 153, 442–452 (1992).

    Google Scholar 

  • C.B. Beggs, K.G. Kerr, J.K. Donelly, P.A. Sleigh, D.D. Mara, G. Cairns, Transactions of the Royal Society of Tropical Medicine and Hygiene 94, 141–146 (2000).

    Google Scholar 

  • E.F. Blatchley, Water Research 31, 2205–2218 (1997).

    Google Scholar 

  • A.P. Casarett, Radiation Biology (Prentice-Hall, Englewood, 1968).

    Google Scholar 

  • O. Cerf, Journal of Applied Bacteriology 42, 1–19 (1977).

    Google Scholar 

  • H. Chick, Journal of Hygiene 8, 92 (1908).

    Google Scholar 

  • F.M. Collins, Applied Microbiology 21, 411–413 (1971).

    Google Scholar 

  • H.L. David, The American Review of Respiratory Disease 108, 1175–1184 (1973).

    Google Scholar 

  • I.A. Davidovich, G.P. Kishchenko, Molecular Genetics, Microbiology and Virology 6, 13–16 (1991).

    Google Scholar 

  • W.B. Elmer, The Optical Design of Reflectors (TLA Lighting Consultants, Inc., Salem, MA, 1989).

    Google Scholar 

  • H. Fujikawa, T. Itoh, Applied Microbiology 62, 3745–3749 (1996).

    Google Scholar 

  • G.J. Galasso, D.G. Sharp, Journal of Bacteriology 90, 1138–1142 (1965).

    Google Scholar 

  • F.L. Gates, Journal of General Physiology 13, 231–260 (1929).

    Google Scholar 

  • R.W. Gilpin, in Legionella: Proceedings of the 2nd International Symposium, edited by C. Thornsberry (American Society for Microbiology, Washington, 1984).

    Google Scholar 

  • W. Harm, Biological Effects of Ultraviolet Radiation (Cambridge University Press, New York, 1980)

    Google Scholar 

  • W.F. Hill, F.E. Hamblet, W.H. Benton, E.W. Akin, Applied Microbiology 19, 805–812 (1970).

    Google Scholar 

  • IES, Lighting Handbook Application Volume (Illumination Engineering Society, 1970).

  • S.M. Jacob, J.S. Dranoff, AIChE Journal 16, 359–363 (1970).

    Google Scholar 

  • M.M. Jensen, Applied Microbiology 12, 418–420 (1964).

    Google Scholar 

  • L.C. Keller, T.L. Thompson, R.B. Macy Applied and Environmental Microbiology 43, 424–429 (1982).

    Google Scholar 

  • G.B. Knudson, Applied and Environmental Microbiology 52, 444–449 (1986).

    Google Scholar 

  • A.L. Koch, Bacterial Growth and Form (Chapman & Hall, New York, 1995).

    Google Scholar 

  • W.J. Kowalski, W.P. Bahnfleth, ASHRAE Transactions 106, 4–15 (2000).

    Google Scholar 

  • W.J. Kowalski, PhD Thesis, The Pennsylvania State University (2001).

  • O.M. Lidwell, E.J. Lowbury, Annual Review of Microbiology 14, 38–43 (1950).

    Google Scholar 

  • J.S. Little, R.A. Kishimoto, P.G. Canonico, Infection Immunity 27, 837–841 (1980).

    Google Scholar 

  • M. Luckiesh, Applications of Germicidal, Erythemal and Infrared Energy (D. Van Nostrand Co., New York, 1946).

    Google Scholar 

  • E. Mitscherlich, E.H. Marth, Microbial Survival in the Environment (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  • W.A. Moats, R. Dabbah, V.M. Edwards, Journal of Food Science 36, 523–526 (1971).

    Google Scholar 

  • M.F. Modest, Radiative Heat Transfer (McGraw-Hill, New York, 1993).

    Google Scholar 

  • J. Mongold, Genetics 132, 893–898 (1992).

    Google Scholar 

  • N. Munakata, M. Saito, K. Hieda, Photochemistry and Photobiology 54, 761–768 (1991).

    Google Scholar 

  • Philips, Germicidal Lamps and Applications (Catalog No. U.D.C. 628.9, Netherlands, 1985).

  • K.M. Pruitt, D.N. Kamau, Journal of Industrial Microbiology 12, 221–231 (1993).

    Google Scholar 

  • R.G. Qualls, J.D. Johnson, Applied Microbiology 45, 872–877 (1983).

    Google Scholar 

  • R.O. Rahn, P. Xu, S.L. Miller. Photochemistry and Photobiology 70, 314–318 (1999).

    Google Scholar 

  • A.J. Rainbow, S. Mak, International Journal of Radiation Biology 24, 59–72 (1973).

    Google Scholar 

  • H.C. Rentschler, R. Nagy, G. Mouromseff, Journal of Bacteriology 42, 745–774 (1941).

    Google Scholar 

  • H.C. Rentschler, R. Nagy, Journal of Bacteriology 44, 85–94 (1942).

    Google Scholar 

  • R.L. Riley, M. Knight, G. Middlebrook, American Review of Respiratory Disease 113, 413–418 (1976).

    Google Scholar 

  • R.L. Riley, J.E. Kaufman, Applied Microbiology 23, 1113–1120 (1972).

    Google Scholar 

  • W.M. Rohsenow, J.P. Hartnett, Handbook of Heat Transfer (McGraw-Hill, New York, 1973).

    Google Scholar 

  • A.D. Russell, The Destruction of Bacterial Spores (Academic Press, New York, 1982).

    Google Scholar 

  • B.F. Severin, M.T. Suidan, R.S. Englebrecht, Water Research 17, 1669–1678 (1983).

    Google Scholar 

  • B.F. Severin, M.T. Suidan, B.E. Rittmann, R.S. Englebrecht, Journal of Water Pollution Control 56, 164–169 (1984).

    Google Scholar 

  • B.F. Severin, P.F. Roessler, Water Research 32, 1718–1724 (1998).

    Google Scholar 

  • G. Sharp, Journal of Bacteriology 37, 447–459 (1939).

    Google Scholar 

  • G. Sharp, Journal of Bacteriology 38, 535–547 (1940).

    Google Scholar 

  • G.H. Smerage, A.A. Teixeira, Journal of Industrial Microbiology 12, 211–220 (1993).

    Google Scholar 

  • M.T. Suidan, B.F. Severin, AIChE Journal 32, 1902–1909 (1986).

    Google Scholar 

  • UVDI, Report on Bioassays of S. marscecens and B. subtilis exposed to UV irradiation. Ultraviolet Devices, Inc. (2000).

  • Y. Wang, A. Casadevall, Applied Microbiology 60, 3864–3866 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowalski, W.J., Bahnfleth, W.P., Witham, D.L. et al. Mathematical Modeling of Ultraviolet Germicidal Irradiation for Air Disinfection. Quantitative Microbiology 2, 249–270 (2000). https://doi.org/10.1023/A:1013951313398

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013951313398

Navigation