Skip to main content
Log in

Active Sites in Heterogeneous Catalysis: Development of Molecular Concepts and Future Challenges

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The concept that catalytic turnover occurs at a small fraction of the surface sites dates back to the 1920s. The application of modern surface science techniques and model catalysts confirmed the presence of active sites and identified their structures in some cases. Low coordination defect sites on transition metals, steps and kinks, or open “rough” crystal faces that make high coordination metal sites available have been uniquely active for breaking H–H, C–H, C–C, C=O, O=O and N≡N bonds. Oxide–metal interfaces provide highly active sites for reactions of C–H and C=O bonds. Electron acceptor and proton donor sites are implicated in hydrocarbon conversion (acid–base catalysis), and sites where metal ion–carbon bonds can form are active for polymerization. The observations of dynamic restructuring of catalytic surfaces upon adsorption of reactants indicate that many catalytic sites are created during the chemical reaction. Similar restructuring is detected for enzyme catalysts. The high mobility of both surface metal atoms and adsorbed molecules during the catalytic process observed recently bring into focus the dynamic nature of active sites that may have a finite lifetime as they form and disassemble. The development of techniques that provide improved time resolution and spatial resolution, and can be employed under catalytic reaction conditions will provide information about the time dependent changes of active site structure and molecular intermediates at these active sites as the reaction products form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.S. Taylor, Proc. Roy. Soc. A 108 (1925) 105.

    Google Scholar 

  2. J.A. Osborne, F.H. Jardine, J.F. Young and Wilkinson, Chem. Commun. 17 (1965) 131.

    Google Scholar 

  3. S.L. Bernasek, W.J. Siekhaus and G.A. Somorjai, Phys. Rev. Lett. 30 (1973) 1202.

    Google Scholar 

  4. S.L. Bernasek and G.A. Somorjai, J. Chem. Phys. 62 (1975) 3149.

    Google Scholar 

  5. G.A. Somorjai, M. Salmeron and R.J. Gale, J. Chem. Phys. 2807 (1979) 70.

    Google Scholar 

  6. R.J. Gale, M. Salmeron and G.A. Somorjai, Phys. Rev. Lett. 48 (1977) 1027.

    Google Scholar 

  7. R.J. Gale, M. Salmeron and G.A. Somorjai, J. Chem. Phys. 67 (1977) 5324.

    Google Scholar 

  8. B.C. Stipe, M.A. Rezaei, W. Ho, S. Gao, M. Persson and B.I. Lundqvist, Phys. Rev. Lett. 78 23 (1997) 4410.

    Google Scholar 

  9. R.K. Grasselli and J.D. Burrington, Adv. Catal. 30 (1981) 133.

    Google Scholar 

  10. P. Biloen, F.M. Dantzenberg and W.M.H. Sachtler, J. Catal. 50 (1977) 77.

    Google Scholar 

  11. D.W. Blakely and G.A. Somorjai, J. Catal. 42 (1976) 181.

    Google Scholar 

  12. D.W. Blakely and G.A. Somorjai, Nature 258 (1975) 580.

    Google Scholar 

  13. S.M. Davis and G.A. Somorjai, Surf. Sci. 91 (1980) 73.

    Google Scholar 

  14. S.M. Davis, F. Zaera and G.A. Somorjai, J. Am. Chem. Soc. 104 (1982) 7453.

    Google Scholar 

  15. C.N.R. Rao and G. Ranga, Surf. Sci. Rep. 13 (1991) 221, and references therein.

    Google Scholar 

  16. A. Ozaki and K. Aika, in: Catalysis: Science and Technology,Vol.1, eds. J.R. Anderson and M. Boudart (Springer, Berlin, 1981).

    Google Scholar 

  17. D.R. Strongin, J. Carraza, S.R. Bare and G.A. Somorjai, J. Catal. 103 (1987) 213.

    Google Scholar 

  18. J.A. Dumesic, H. Topsøe and M. Boudart, J. Catal. 37 (1975) 513.

    Google Scholar 

  19. N.D. Spencer, R.C. Schoonmaker and G.A. Somorjai, J. Catal. 74 (1982) 129.

    Google Scholar 

  20. G.A. Somorjai and Y. Borodko, Catal. Lett. 59 (1999) 89.

    Google Scholar 

  21. H. Beinert, R.H. Holm and E. Munck, Science 277 (1997) 653.

    Google Scholar 

  22. M.C. Kennedy, T.A. Kent, M. Emptage, H. Merklet, H. Beinert and E. Munck, J. Biol. Chem. 259 (1984) 14463.

    Google Scholar 

  23. J.B. Howard and D.C. Rees, Chem. Rev. 96 (1996) 2965.

    Google Scholar 

  24. J. Kim and D.C. Rees, Nature 360 (1992) 553.

    Google Scholar 

  25. J.T. Bolin, A.E. Ronco, T.V. Morgan, L.E. Martenson and N.H. Xuong, Proc. Natl. Acad. Sci. 98 (1993) 1078.

    Google Scholar 

  26. D.E. Eastman, J.E. Demuth and J.M. Baker, J. Vac. Sci. Technol. 11 (1974) 273.

    Google Scholar 

  27. W. Erley and H. Wagner, Surf. Sci. 74 (1978) 333.

    Google Scholar 

  28. I. Murayama, I. Kojima, E. Miyazaki and I. Yasumori, Surf. Sci. 118 (1982) L28.

    Google Scholar 

  29. R. Rosel, F. Ciccacci, R. Memeo, C. Mariani, L.S. Caputi and L. Papagno, J. Catal. 83 (1983) 19.

    Google Scholar 

  30. C. Astaldi, A. Santoni, F. Della Valle and R. Rosel, Surf. Sci. 220 (1989) 322.

    Google Scholar 

  31. Y. Iwasawa, R. Mason and G.A. Somorjai, Chem. Phys. Lett. 44 (1976) 468.

    Google Scholar 

  32. B. Lang, R.W. Joyner and G.A. Somorjai, Surf. Sci. 30 (1972) 454.

    Google Scholar 

  33. Y.O. Park, W.F. Banholzer and R.I. Masel, Surf. Sci. 155 (1985) 341.

    Google Scholar 

  34. K.Y. Kung, P. Chen and G.A. Somorjai, Surf. Sci., to be published.

  35. E.A. Wovchko and J.T. Yates, J. Am. Chem. Soc. 118 (1996) 10250.

    Google Scholar 

  36. N. Kruse and A. Gaussman, Surf. Sci. 266 (1992) 51.

    Google Scholar 

  37. B.J. McIntyre, M. Salmeron and G.A. Somorjai, J. Vac. Sci. Technol. A 11 (1993) 1964.

    Google Scholar 

  38. R. Burch and A.R. Flambard, J. Catal. 86 (1982) 384.

    Google Scholar 

  39. A. Boffa, C. Lin, A.T. Bell and G.A. Somorjai, J. Catal. 149 (1994) 149.

    Google Scholar 

  40. W.M.H. Sachtler and M. Ichikawa, J. Phys. Chem. 90 (1986) 4752.

    Google Scholar 

  41. W.M.H. Sachtler, D.F. Shriver, W.B. Hollenberg and A.F. Long, J. Catal. 92 (1985) 429.

    Google Scholar 

  42. G.A. Somorjai, T.S. Oyama, G.T. Went, K.B. Lewis and A.T. Bell, J. Phys. Chem. 93 (1989) 6786.

    Google Scholar 

  43. G.L. Haller and D.E. Resasco, Adv. Catal. 36 (1989) 173.

    Google Scholar 

  44. I. Mochida, I. Nobuhide, H. Ishibashi and H. Fujitsu, J. Catal. 110 (1988) 159.

    Google Scholar 

  45. T. Iizuka, Y. Tanaka and K. Tanabe, J. Mol. Catal. 17 (1982) 381.

    Google Scholar 

  46. A. Trovarelli, C. Mustazza, G. Dolcetti, J. Kaspar and M. Graziani, Appl. Catal. 65 (1990) 129.

    Google Scholar 

  47. S.J. Tauster, Acc. Chem. Res. 20 (1987) 389.

    Google Scholar 

  48. A.T. Bell, Catalyst Design - Progress and Perspectives, ed. L.L. Hegedus (Wiley, New York, 1987).

    Google Scholar 

  49. A.M. Wander, M.A. van Hove and G.A. Somorjai, Phys. Rev. Lett. 67 (1991) 626.

    Google Scholar 

  50. G.A. Somorjai and G. Rupprechter, in: Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis, Stud. Surf. Sci. Catal., Vol. 109, eds. G.F. Froment and K. Waugh (Elsevier, 1997) p. 35.

  51. L.L. Kesmodel, P.C. Stair, R.C. Baetzold and G.A. Somorjai, Phys. Rev. Lett. 36 (1976) 1316.

    Google Scholar 

  52. L.L. Kesmodel, L.H. Dubois and G.A. Somorjai, J. Chem. Phys. 70 (1979) 2180.

    Google Scholar 

  53. U. Starke, A. Barbieri, N. Materer, M.A. van Hove and G.A. Somorjai, Surf. Sci. 286 (1993) 1.

    Google Scholar 

  54. A. Wander, M.A. van Hove and G.A. Somorjai, Phys. Rev. Lett. 67 (1991) 626.

    Google Scholar 

  55. M.A. van Hove, R.J. Koestner, P.C. Stair, J.P. Bikerian, L.L. Kesmodel, I. Bartos and G.A. Somorjai, Surf. Sci. 103 (1981) 189.

    Google Scholar 

  56. Y. Ganthier, R. Baudoing-Savois, K. Heinz and H. Landskron, Surf. Sci. 251 (1991) 493.

    Google Scholar 

  57. J.H. Onuferko, D.P. Woodruff and P.W. Holland, Surf. Sci. 87 (1979) 357.

    Google Scholar 

  58. W. Oed, H. Lindner, U. Starke, K. Heinz, K. Muller and J.B. Pendry, Surf. Sci. 224 (1989) 179.

    Google Scholar 

  59. M.A. van Hove, W.M. Weinberg and C.M. Chan, Low Energy Electron Diffraction (Springer, Berlin, 1986).

    Google Scholar 

  60. H.D. Shih, F. Jona, P.W. Jepsen and P.M. Marcus, Phys. Rev. Lett. 46 (1981) 731.

    Google Scholar 

  61. C.M. Chan and M.A. van Hove, Surf. Sci. 183 (1987) 303.

    Google Scholar 

  62. B.J. McIntyre, M. Salmeron and G.A. Somorjai, J. Vac. Sci. Technol. A 266 (1992) 51.

    Google Scholar 

  63. Y.R. Shen, Surf. Sci. 299/300 (1994) 551.

    Google Scholar 

  64. Q. Du, R. Superfine, E. Freysz and Y.R. Shen, Phys. Rev. Lett. 70 (1993) 2313.

    Google Scholar 

  65. Y.R. Shen, Nature 337 (1989) 519.

    Google Scholar 

  66. Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

    Google Scholar 

  67. P. Guyot-Sionnest, J.H. Hunt and Y.R. Shen, Phys. Rev. Lett. 59 (1987) 1597.

    Google Scholar 

  68. C.D. Bain, J. Chem. Soc. Faraday Trans. 91 (1995) 1281.

    Google Scholar 

  69. P.S. Cremer, X. Su, Y.R. Shen and G.A. Somorjai, J. Am. Chem. Soc. 118 (1996) 2942.

    Google Scholar 

  70. I. Horiuti and M. Polanyi, Trans. Faraday Soc. 30 (1934) 1164.

    Google Scholar 

  71. A. Cassuto, J. Kiss and J. White, Surf. Sci. 255 (1991) 289.

    Google Scholar 

  72. H. Ibach and S. Lehwald, Surf. Sci. 117 (1982) 685.

    Google Scholar 

  73. P. Cremer, C. Stanners, J. Niemantsverdriet, Y. Shen and G. Somorjai, Surf. Sci. 328 (1993) 111.

    Google Scholar 

  74. T. Land, T. Michely, R. Behm, J. Hemminger and G. Comsa, J. Chem. Phys. 97 (1992) 6774.

    Google Scholar 

  75. S. Davis, F. Zaera, B. Gordon and G. Somorjai, J. Catal. 92 (1985) 250.

    Google Scholar 

  76. T. Beebe and J. Yates, J. Am. Chem. Soc. 108 (1986) 663.

    Google Scholar 

  77. S. Mohsin, M. Trenary and H. Robota, J. Phys. Chem. 92 (1988) 5229.

    Google Scholar 

  78. P.S. Cremer, X. Su, Y.R. Shen and G.A. Somorjai, J. Am. Chem. Soc. 118 (1996) 2942.

    Google Scholar 

  79. P.S. Cremer, X. Su, Y.R. Shen and G.A. Somorjai, J. Phys. Chem. 10040 (1996) 16302.

    Google Scholar 

  80. U. Starke, A. Barbieri, N. Materer, M.A. van Hove and G.A. Somorjai, Surf. Sci. 286 (1993) 1.

    Google Scholar 

  81. R. Döll, C.A. Gerken, M.A. van Hove and G.A. Somorjai, Surf. Sci. 374 (1997) 151.

    Google Scholar 

  82. McCrea, K.M., Parker and G.A. Somorjai, in preparation.

  83. M.E. Bussell, F.C. Henn and C.T. Campbell, J. Phys. Chem. 96 (1992) 5965.

    Google Scholar 

  84. J.A. Rodriguez and C.T. Campbell, J. Phys. Chem. 93 (1989) 826.

    Google Scholar 

  85. C.L.A. Lamont, M. Borbach, R. Martin, P. Gardner, T.S. Jones, H. Conrad and A.M. Bradshaw, Surf. Sci. 374 (1997) 215.

    Google Scholar 

  86. D.P. Land, W. Erley and H. Ibach, Surf. Sci. 289 (1993) 773.

    Google Scholar 

  87. R. Martin, P. Gardner, M. Tushaus, C.H. Bonev, A.M. Bradshaw and T.S. Jones, J. Electron Spectrosc. Relat. Phenom. 54/55 (1990) 773.

    Google Scholar 

  88. X. Su, K. Kung, J. Lahtinen, Y.R. Shen and G.A. Somorjai, Catal. Lett. 54 (1998) 9.

    Google Scholar 

  89. X. Su, Y.R. Shen, K.Y. Kung, J. Lahtinen and G.A. Somorjai, J. Mol. Catal. A 141 (1999) 9.

    Google Scholar 

  90. G.M. Pajonk, S.J. Teichner and J.E. Germain, eds., Studies in Surface Science and Catalysis, Vol. 17 (Elsevier, Amsterdam, 1983).

    Google Scholar 

  91. W.C. Connor, G.M. Pajonk and S.J. Teichner, Adv. Catal. 34 (1986) 1.

    Google Scholar 

  92. J. Hager, Y.R. Shen and H. Walther, Phys. Rev. A 31 (1985) 1962.

    Google Scholar 

  93. W.D. Gillespie, R.K. Herz, E.E. Peterson and G.A. Somorjai, J. Catal. 70 (1981) 147.

    Google Scholar 

  94. G.A. Somorjai, in: The Physical Basis for Heterogeneous Catalysis, eds. E. Drauglis and R.I. Jaffee (Plenum, New York, 1976).

    Google Scholar 

  95. S.M. Davis and G.A. Somorjai, The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol. 4., eds. P.A. King and D.P. Woodruff (Elsevier, 1982).

  96. G.A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).

    Google Scholar 

  97. J.A. Rodriguez and D.W. Goodman, Surf. Sci. Rep. 14 (1991) 1.

    Google Scholar 

  98. F.H. Ribeiro, A.L. Bonivardi, C. Kim and G.A. Somorjai, J. Catal. 150 (1994) 186.

    Google Scholar 

  99. C. Kim and G.A. Somorjai, Catalysis of Organic Reactions (Dekker, New York, 1994) pp. 511–514.

    Google Scholar 

  100. C. Kim and G.A. Somorjai, J. Catal. 134 (1992) 179.

    Google Scholar 

  101. F.H. Ribeiro, A.L. Bonivardi and G.A. Somorjai, Catal. Lett. 27 (1994) 1.

    Google Scholar 

  102. F.H. Ribeiro, A.L. Bonivardi, C. Kim and G.A. Somorjai, J. Catal. 150 (1994) 186.

    Google Scholar 

  103. M.X. Yang, D.H. Gracias, P.W. Jacobs and G.A. Somorjai, Langmuir 14 (1998) 1458.

    Google Scholar 

  104. M.X. Yang, P.W. Jacobs, C. Yoon, L. Muray, E. Anderson, D. Attwood and G.A. Somorjai, Catal. Lett. 45 (1998) 5.

    Google Scholar 

  105. A.C. Krauth, K.H. Lee, G.H. Bernstein and E.E. Wolf, Catal. Lett. 27 (1994) 43.

    Google Scholar 

  106. A. Avoyan, G. Rupprechter, A.S. Eppler and G.A. Somorjai, Topics Catal. 10 (2000) 107.

    Google Scholar 

  107. A.S. Eppler, G. Rupprechter, L. Guczi and G.A. Somorjai, J. Phys. Chem. 101 (1997) 9973.

    Google Scholar 

  108. K. Wong, S. Johansson and B. Kasemo, Faraday Discussions 105 (1996) 237.

    Google Scholar 

  109. G.A. Somorjai and M.X. Yang, J. Mol. Catal. A 115 (1997) 389.

    Google Scholar 

  110. A.S. Eppler, J. Zhu, E.A. Anderson and G.A. Somorjai, Topics Catal., to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somorjai, G., McCrea, K. & Zhu, J. Active Sites in Heterogeneous Catalysis: Development of Molecular Concepts and Future Challenges. Topics in Catalysis 18, 157–166 (2002). https://doi.org/10.1023/A:1013874202404

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013874202404

Navigation