Skip to main content
Log in

Age-related Changes in Venticular–Arterial Coupling: Pathophysiologic Implications

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The interaction of the heart with the systemic vasculature, termed ventricular–arterial coupling, is a central determinant of net cardiovascular performance. The capacity of the body to augment cardiac output, regulate systemic blood pressure, and respond appropriately to elevations in heart rate and venous filling volume is related as much to the properties of the heart as it is the vasculature into which the heart ejects. With aging, changes in the arterial system associated with vascular stiffening and a reduction in peripheral vasomotor regulation can profoundly affect this coupling by imposing far greater pulsatile and late-systolic loads on the heart. This is accompanied by tandem increases in left ventricular end-systolic stiffness (end-systolic chamber elastance) and reduced diastolic compliance. Altered coupling related to combined ventricular–vascular stiffening increases blood pressure lability for a given change in hemodynamic loading and heart rate (i.e. under stress demands), as well as reduces the capacity to enhance cardiac output without greatly increasing cardiac wall stress. Furthermore, such coupling influences myocardial perfusion by elevating the proportion of coronary flow during the systolic time period. This more closely links ventricular systolic function with myocardial flow, and can compromise flow reserve and exacerbate ischemic dysfunction when ventricular systolic function declines, such as with concomitant heart failure or acute regional ischemia. This article reviews the theory behind ventricular–arterial coupling analysis, the changes in coupling that occur with age and their impact on normal reserve mechanisms, and the likely role of these changes have on heart failure and ischemic heart disease and disease therapy in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 1983; 245:H773-H780.

    Google Scholar 

  2. Sunagawa K, Maughan WL, Sagawa K. Stroke volume effect of changing arterial input impedance over selected frequency ranges. Am J Physiol 1985; 248:H477-H484

    Google Scholar 

  3. Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Aortic input impedance in normal man: relationship to pressure waveforms. Circulation 1980;62:105-116.

    Google Scholar 

  4. Stergiopulos N, Westerhof BE, Westerhof N. Physical basis of pressure transfer from periphery to aorta: a model-based study. Am J Physiol 1998;274:H1386- H1392

    Google Scholar 

  5. Stergiopulos N, Westerhof BE, Westerhof N. Total arterial inertance as the fourth element of the windkessel model. Am J Physiol 1999;276:H81–H88

    Google Scholar 

  6. Van Den Bos GC, Westerhof N, Elzinga G, Sipkema P. Reflection in the systemic arterial system: effects of aortic and carotid occlusion. Cardiovas Res 1976;10:565-573.

    Google Scholar 

  7. Nichols WW, O'Rourke MF. Contours of pressure and flow waves in arteries. In: McDonald's Blood Flow in Arteries. London: Anonymous Arnold, 1998, 170-200.

    Google Scholar 

  8. Little WC, Cheng CP. Left ventricular-arterial coupling in conscious dogs. Am J Physiol 1991; 261:H70-H76

    Google Scholar 

  9. Little WC, Cheng CP. Effect of exercise on left ventricular- vascular coupling assessed in the pressure- volume plane. Am J Physiol 1993;264:H1629-H1633

    Google Scholar 

  10. Starling MR. Left ventricular-arterial coupling relations in the normal human heart. Am Heart J 1993;125:1659-1666.

    Google Scholar 

  11. Aviolio AP, Fa-Quan D, Wei-Qiang L, Yao-Fei L, Zhen-Dong H, Lian-Fen X, O'Rourke MF. Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China. Circulation 1985;71:202-210.

    Google Scholar 

  12. Avolio AP, Chen SG, Wang RP, Zhang CL, Li MF, O'Rourke MF. Effects of age on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation 1983;68:50-58.

    Google Scholar 

  13. Nichols WW, O'Rourke MF. Aging. In: Nichols WW, ORourke MF, eds. McDonald's Blood Flow in Arteries. London: Edward Arnold, 1998, 398-420.

    Google Scholar 

  14. O'Rourke MF. Isolated systolic hypertension, pulse pressure, andarterial stiffness as risk factors for cardiovascular disease. Curr Hypertens Rep 1999;1:204-211.

    Google Scholar 

  15. Vaccarino V, Holford TR, Krumholz HM. Pulse pressure and risk for myocardial infarction and heart failure in the elderly. J Am Coll Cardiol 2000;36:130-138.

    Google Scholar 

  16. Benetos A, Rudnichi A, Safar M, Guize L. Pulse pressure and cardiovascular mortality in normotensive and hypertensive subjects. Hypertension 1998;32: 560-564.

    Google Scholar 

  17. Franklin SS, Khan SA, Wong ND, Larson MG, Levy D. Is pulse pressure useful in predicting risk for coronary heart disease? The Framingham heart study. Circulation 1999;100:354-360.

    Google Scholar 

  18. Chae CU, Pfeffer MA, Glynn RJ, Mitchell GF, Taylor JO, Hennekens CH. Increased pulse pressure and risk of heart failure in the elderly. JAMA 1999;281:634-639.

    Google Scholar 

  19. Buckberg GD, Fixler DE, Archie JP, Hoffman JI. Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res 1972;30:67-81.

    Google Scholar 

  20. Chen C-H, Nakayama M, Nevo E, Fetics BJ, Maughan WL, Kass DA. Coupled systolic-ventricular and vascular stiffening with age implications for pressure regulation and cardiac reserve in the elderly. J Am Coll Cardiol 1998;32:1221-1227.

    Google Scholar 

  21. Sunagawa K, Maughan WL, Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 1985;56:586-586.

    Google Scholar 

  22. Myhre ESP, Johansen A, Piene H. Optimal matching between canine left ventricle and afterload. Am J Physiol 1988;254:H1051-H1058

    Google Scholar 

  23. Elzinga G, Westerhof N. Matching between ventricle and arterial load. Circ Res 1991;68:1495-1500

    Google Scholar 

  24. Sunagawa K, Sagawa K, Maughan WL. Ventricular interaction with the vascular system in terms of pressure-volume relationships. In: Yin FCP, ed. Ventriculo-vascular coupling: clinical, physiologic, and engineering aspects. New York: Springer Verlag, 1987, 210-239.

    Google Scholar 

  25. Kelly RP, Ting CT, Yang TM, Maughan WL, Chang MS, Kass DA. Effective arterial elastance as index of arterial vascular load in humans. Circulation 1992;86:513-521.

    Google Scholar 

  26. Kelly RP, Tunin R, Kass DA. Effect of reduced aortic compliance on cardiac efficiency and contractile function of in situ canine left ventricle. Circ Res 1992;71:490-502.

    Google Scholar 

  27. Kass DA, Kelly RP. Ventriculo-arterial coupling: Concepts, assumptions, and applications. Annals of Biomedical Engineering 1992;20:41-62.

    Google Scholar 

  28. Kass DA, Grayson R, Marino P. Pressure-volume analysis as a method for quantifying simultaneous drug (amrinone) effects on arterial load and contractile state. J Am Coll Cardiol 1990;16:726-732.

    Google Scholar 

  29. Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol 1986;250:R1021-R1027

    Google Scholar 

  30. de Tombe PP, Jones S, Burkhoff D, Hunter WC, Kass DA. Ventricular stroke work and efficiency both remain nearly optimal despite altered vascular loading. Am J Physiol 1993;264:H1817-H1824.

    Google Scholar 

  31. Chiu YC, Arand PW, Carroll JD. Power-afterload relation in the failing human ventricle. Circ Res 1992;70:530-535.

    Google Scholar 

  32. Toorop GP, van den Horn GJ. Matching between feline left ventricle and arterial load: optimal external power or efficiency. Am J Physiol 1988;254:H279-H285.

    Google Scholar 

  33. van den Horn GJ, Westerhof N, Elzinga G. Interaction of heart and arterial system. Ann Biomed Eng 1984;12:151-162.

    Google Scholar 

  34. Asanoi H, Sasayama S, Kameyama T. Ventriculoarterial coupling in normal and failing heart in humans. Circ Res 1989;65:483-493.

    Google Scholar 

  35. Feldman MD, Pak PH, Wu CC, Haber HL, Heesch CM, Bergin JD, Powers ER, Cowart TD, Johnson W, Feldman AM, Kass DA. Acute cardiovascular effects of OPC-18790 in patients with congestive heart failure. Circulation 1996;96:474-483.

    Google Scholar 

  36. Ishihara H, Yokota M, Sobue T, Saito H. Relation between ventriculoarterial coupling and myocardial energetics in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 1994;23:406-416.

    Google Scholar 

  37. Benetos A, Laurent S, Hoeks AP, Boutouyrie PH, Safar ME. Arterial alterations with aging and high blood pressure. Arteriosclerosis and Thrombosis 1993;13:90-97

    Google Scholar 

  38. Cohen-Solal A, Caviezel B, Laperche T, Gourgon R. Effects of aging on left ventricular-arterial coupling in man: assessment by means of arterial effective and left ventricular elastances. J Hum Hypertens 1996;10:111-116.

    Google Scholar 

  39. Saba PS, Ganau A, Devereux RB, Pini R, Pickering TG, Roman MJ. Impact of arterial elastance as a measure of vascular load on left ventricular geometry in hypertension. J Hypertens 1999;17:1007-1015.

    Google Scholar 

  40. Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart. Circ Res 1991;68:1560-1568.

    Google Scholar 

  41. Nakayama M, Chen CH, Nevo E, Fetics B, Wong E, Kass DA. Optimal preload-adjustment of maximal ventricular power index varies with cardiac chamber size. Am Heart J 1998;136:281-288.

    Google Scholar 

  42. Rutan GH, Hermanson B, De Kittner SJ, LaBaw F, Tell GS. Orthostatic hypotension in older adults: the Cardiovascular Health Study. Hypertension 1992;19:508-519.

    Google Scholar 

  43. Jansen RWMM, Connelly CM, Kelley-Gagnon MM, Parker JA, Lipsitz LA. Postprandial hypotension in elderly patients with unexplained syncope. Arch Intern Med 1995;155:945-952.

    Google Scholar 

  44. Jansen RWMM, Lipsitz LA. Postprandial hypotension: epidemiology, pathophysiology, and clinical management. Ann Intern Med 1995;122:286-295.

    Google Scholar 

  45. Ooi WL, Barrett S, Hossain M, Kelley-Gagnon MM, Lipsitz LA. Patterns of orthostatic blood pressure change and their clinical correlates in a frail, elderly population. JAMA 1997;277:1299-1304.

    Google Scholar 

  46. Sharir T, Feldman MD, Haber H, Feldman AM, Marmor A, Becker LC, Kass DA. Ventricular systolic assessment in patients with dilated cardiomyopathy by preload-adjusted maximal power. Validation and Noninvasive application. Circulation 1994;89:2045- 2053.

    Google Scholar 

  47. Nussbacher A, Gerstenblith G, O'Connor FC, Becker LC, Kass DA, Schulman SP, Fleg JL, Lakatta EG. Hemodynamic effects of unloading the old heart. Am J Physiol 1999;277:H1863-H1871

    Google Scholar 

  48. Starling RC. The heart failure pandemic: changing patterns, costs, and treatment strategies. Cleve Clin J Med 1998;65:351-358.

    Google Scholar 

  49. Kitzman DW. Diastolic dysfunction in the elderly. Genesis and diagnostic and therapeutic implications. Cardiol Clin 2000;18:597-617.

    Google Scholar 

  50. Kitzman DW. Heart failure with normal systolic function. Clin Geriatr Med 2000 August;16(3):489-512.

    Google Scholar 

  51. Schocken DD. Epidemiology and risk factors for heart failure in the elderly. Clin Geriatr Med 2000 August;16(3):407-418.

    Google Scholar 

  52. Vasan RS, Larson MG, Benjamin EJ, Evans JC, Reiss CK, Levy D. Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction: prevalence and mortality in a population-based cohort. J Am Coll Cardiol 1999;33:1948-1955.

    Google Scholar 

  53. Vasan RS, Levy D. The role of hypertension in the pathogenesis of heart failure. A clinical mechanistic overview. Arch Intern Med 1996;156:1789-1796.

    Google Scholar 

  54. Kass DA, Marino P, Maughan WL, Sagawa K. Determinants of end-systolic pressure-volume relations during acute regional ischemia in situ. Circulation 1989;80:1783-1794.

    Google Scholar 

  55. Maggioni AP, Maseri A, Fresco C, Franzosi MG, Mauri F, Santoro E, Tognoni G, and on behalf of the investigators of the Gruppo Italiano per lo Studio della Sopravvienza nell Infarto Miocardico (GISSI-II). Age-Related Changes in Venticular-Arterial Coupling 61 Age-related increase in mortality among patients with first myocardial infarctions treated with thrombolysis. N Engl J Med 1993;329:1442-1448.

    Google Scholar 

  56. Saeki A, Recchia F, Kass DA. Systolic flow augmentation in hearts ejecting into a model of stiff aging vasculature. Influence on myocardial perfusiondemand balance. Circ Res 1995;76:132-141.

    Google Scholar 

  57. Paolocci N, Pagliaro P, Isoda T, Saavedra WF, Kass DA. Role of calcium-sensitive K+-channels and nitric oxide to in vivo coronary vasodilation from enhanced perfusion pulsatility. Circulation 2001;103:119-124.

    Google Scholar 

  58. Recchia FA, Senzaki H, Saeki A, Byrne BJ, Kass DA. Pulse pressure-related changes in coronary flow in vivo are modulated by nitric oxide and adenosine. Circ Res 1996;79:849-856.

    Google Scholar 

  59. Kass DA, Saeki A, Tunin RS, Recchia FA. Adverse influence of systemic vascular stiffening on cardiac dysfunction and adaptation to acute coronary occlusion. Circulation 1996;93:1533-1541.

    Google Scholar 

  60. Lijnen P, Petrov V. Induction of cardiac fibrosis by aldosterone [In Process Citation]. 2000 June; 32(6):865-879.

    Google Scholar 

  61. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators [see comments]. N Engl J Med 1999;341:709-717.

    Google Scholar 

  62. Mahmud A, Feely J. Favourable effects on arterial wave reflection and pulse pressure amplification of adding angiotensin II receptor blockade in resistant hypertension. J Hum Hypertens 2000;14:541-546.

    Google Scholar 

  63. Klemsdal TO, Moan A, Kjeldsen SE. Effects of selective angiotensin II type 1 receptor blockade with losartan on arterial compliance in patients with mild essential hypertension. Blood Press 1999;8:214-219.

    Google Scholar 

  64. Asif M, Egan J, Vasan S, Jyothirmayi GN, Masurekar MR, Lopez S, Williams C, Torres RL, Wagle D, Ulrich P, Cerami A, Brines M, Regan TJ. An advanced glycation endproduct cross-link breaker can reverse age-related increases in myocardial stiffness [published erratum appears in Proc Natl Acad Sci USA 2000 May 9;97(10):5679]. Proc Natl Acad Sci 2000;97:2809-2813.

    Google Scholar 

  65. Li YM, Steffes M, Donnelly T, Liu C, Fuh H, Basgen J, Bucala R, Vlassara H. Prevention of cardiovascular and renal pathology of aging by the advanced glycation inhibitor aminoguanidine. Proc Natl Acad Sci USA 1996;93:3902-3907.

    Google Scholar 

  66. Bruel A, Oxlund H. Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis 1996;127:155-165.

    Google Scholar 

  67. Kass DA, Shapiro EP, Kawaguchi M, Capriotti A, Scuteri A, deGroof RC, Lakatta EG. Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation 2001;104:1464-1470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kass, D.A. Age-related Changes in Venticular–Arterial Coupling: Pathophysiologic Implications. Heart Fail Rev 7, 51–62 (2002). https://doi.org/10.1023/A:1013749806227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013749806227

Navigation