Skip to main content
Log in

Refugial isolation versus ecological gradients

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Hypotheses for divergence and speciation in rainforests generally fall into two categories: those emphasizing the role of geographic isolation and those emphasizing the role of divergent selection along gradients. While a majority of studies have attempted to infer mechanisms based on the pattern of species richness and congruence of geographic boundaries, relatively few have tried to simultaneously test alternative hypotheses for diversification. Here we discuss four examples, taken from our work on diversification of tropical rainforest vertebrates, in which we examine patterns of genetic and morphological variation within and between biogeographic regions to address two alternative hypotheses. By estimating morphological divergence between geographically contiguous and isolated populations under similar and different ecological conditions, we attempt to evaluate the relative roles of geographic isolation and natural selection in population divergence. Results suggest that natural selection, even in the presence of appreciable gene flow, can result in morphological divergence that is greater than that found between populations isolated for millions of years and, in some cases, even greater than that found between congeneric, but distinct, species. The relatively small phenotypic divergence that occurs among long-term geographic isolates in similar habitats suggests that morphological divergence via drift may be negligible and/or that selection is acting to produce similar phenotypes in populations occupying similar habitats. Our results demonstrate that significant phenotypic divergence: (1) is not necessarily coupled with divergence in neutral molecular markers; and (2) can occur without geographic isolation in the presence of gene flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Benkman, C.W., 1991. Predation, seed size partitioning and the evolution of body size in seed-eating finches. Evol. Ecol. 5: 118–127.

    Google Scholar 

  • Boag, P.T. & A. van Noordwijk, 1987. Quantitative genetics, pp. 45–78 in Avian Genetics: A Population and Ecological Approach, edited by F. Cooke & P.A. Buckley. Academic Press, New York.

    Google Scholar 

  • Chapin, J.P., 1924. Size-variation in Pyrenestes, a genus of weaver-finch. Am. Mus. Nat. Hist. Bull. 49: 415–441.

    Google Scholar 

  • Chapin, J.P., 1954. The birds of the Belgian Congo. Am. Mus. Nat. Hist. 75, New York.

  • Charlesworth, B., 1994. Evolution in Age-Structured Populations. Cambridge University Press, Cambridge.

    Google Scholar 

  • Dieckmann, U. & M. Doebeli, 1999. On the origin of species by sympatric speciation. Nature 400: 354–357.

    Google Scholar 

  • Edwards, S.V. & P. Beerli, 2000. Gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54: 1839–1854.

    Google Scholar 

  • Endler, J.A., 1982a. Problems in distinguishing historical from ecological factors in biogeography. Am. Zool. 22: 441–452.

    Google Scholar 

  • Endler, J.A., 1982b. Pleistocene forest refuges: fact or fancy, in Biological Diversification in the Tropics, edited by G.T. Prance. Columbia University Press, New York.

    Google Scholar 

  • Fjeldså, J. & J.C. Lovett, 1997. Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. Biodiv. Cons. 6: 325–346.

    Google Scholar 

  • Fridolfsson, A.K. & H. Ellegren, 1999. A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol. 30: 116–121.

    Google Scholar 

  • Funk, D.J., 1998. Isolating a role for natural selection in speciation: host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles. Evolution 52: 1744–1759.

    Google Scholar 

  • Gans, C., 1975. Tetrapod limblessness: evolution and functional corollaries. Am. Zool. 15: 455–467.

    Google Scholar 

  • Garcia-Moreno, J. & J. Fjeldså, 2000. Chronology and mode of speciation in the Andean avifauna. Bonn. Zool. Monogr. 46: 25–46.

    Google Scholar 

  • Garcia-Paris, M., D.A. Good, G. Parra-Olea & D.B. Wake, 2000. Biodiversity of Costa Rican salamanders: implications of high levels of genetic differentiation and phylogeographic structure for species formation. Proc. Natl. Acad. Sci. 97: 1640–1647.

    Google Scholar 

  • Gavrilets, S., 2000. Waiting time to parapatric speciation. Proc. R. Soc. Lond. B 267: 2483–2492.

    Google Scholar 

  • Gavrilets, S., H. Li & M.D. Vose, 2000. Patterns of parapatric speciation. Evolution 54: 1126–1134.

    Google Scholar 

  • Grant, P.R., 1986. Ecology and Evolution of Darwin' Finches. Princeton University Press, Princeton.

    Google Scholar 

  • Haffer, J., 1969. Speciation in Amazonian forest birds. Science 165: 131–137.

    Google Scholar 

  • Haffer, J., 1974. Avian speciation in tropical South America. Publ. Nutt. Ornithol. Club 14, Cambridge MA.

    Google Scholar 

  • Haffer, J., 1993. Time' cycle and time' arrow in the history of Amazonia. Biogeographica 69: 15–45.

    Google Scholar 

  • Haffer, J., 1997. Alternative models of vertebrate speciation in Amazonia: an overview. Biodiv. Cons. 6: 451–477.

    Google Scholar 

  • Hendry, A.P., 2001. Adaptive divergence and the evolution of reproductive isolation in the wild: an empirical demonstration using introduced sockeye salmon. Genetica 112-113: 515–534.

    Google Scholar 

  • Hendry, A.P., J.K. Wenburg, P. Bentzen, E.C. Volk & T.P. Quinn, 2000. Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science 290: 516–518.

    Google Scholar 

  • Johnson, K.P. & M.D. Sorenson, 1998. Comparing molecular evolution in two mitochondrial protein coding genes (cytochrome b and ND2) in the dabbling ducks (Tribe: Anatini). Mol. Phylogen. Evol. 10: 82–94.

    Google Scholar 

  • Keith, S., E.K. Urban & C.H. Fry, 1992. The Birds of Africa. Academic Press, New York.

    Google Scholar 

  • Kondrashov, A.S. & F.A. Kondrashov, 1999. Interactions among quantitative traits in the course of sympatric speciation. Nature 400: 351–354.

    Google Scholar 

  • Korol, A., E. Rashkovetsky, K. Iliadi, P. Michalak, Y. Ronin & E. Nevo, 2000. Nonrandom mating in Drosophila melanogaster laboratory populations derived from closely adjacent ecologically contrasting slopes at ‘Evolution Canyon’. Proc. Natl. Acad. Sci. 97: 12637–12642.

    Google Scholar 

  • Longman, K.A. & J. Jenik, 1992. Forest-savanna boundaries: general considerations, pp. 3–20 in Nature and Dynamics of Forest-Savanna Boundaries, edited by P.A. Furley, J. Proctor & J.A. Ratter. Chapman and Hall, New York.

    Google Scholar 

  • Losos, J.B., T.W. Schoener, K.I. Warheit & D. Creer, 2001. Experimental studies of adaptive differentiation in Bahamian Anolis lizards. Genetica 112-113: 399–415.

    Google Scholar 

  • Louette, M., 1981. The birds of Cameroon. An annotated checklist. Verhandelingen van de Koninklijke Academie voor Wetenschappen, Letteren en Schone Kunsten van Belgie. Klasse der Wetenschappen, Brussels.

    Google Scholar 

  • Lovette, I.J. & E. Bermingham, 1999. Explosive speciation in the New World Dendroica warblers. Proc. R. Soc. Lond. B 266: 1629–1636.

    Google Scholar 

  • Lu, G. & L. Bernatchez, 1999. Correlated trophic specialization and genetic divergence in sympatric lake whitefish ecotypes (Coregonus clupeaformis): support for the ecological speciation hypothesis. Evolution 53: 1491–1505.

    Google Scholar 

  • Lynch, M. & K. Ritland, 1999. Estimation of pairwise relatedness with molecular markers. Genetics 152: 1753–1766.

    Google Scholar 

  • Maynard Smith, J., 1966. Sympatric speciation. Am. Nat. 100: 637–650.

    Google Scholar 

  • Mayr, E., 1963. Animal Species and Evolution. Harvard University Press, Cambridge.

    Google Scholar 

  • Mayr, E. & R.J. O'Hara, 1986. The biogeographical evidence supporting the Pleistocene forest refuge hypothesis. Evolution 40: 55–67.

    Google Scholar 

  • McMillan, W.O., C.D. Jiggins & J. Mallet, 1997. What initiates speciation in passion-vine butterflies? Proc. Natl. Acad. Sci. 94: 8628–8633.

    Google Scholar 

  • Moritz, C., L. Joseph, C. Cunningham & C.J. Schneider, 1997. Molecular perspectives on historical fragmentation of Australian tropical and subtropical rainforest: implications for conservation, pp. 442–454 in Tropical Forest Remnants, edited by W. Laurance & R. Bierregard. University of Chicago Press, Chicago.

    Google Scholar 

  • Moritz, C., J.L. Patton, C.J. Schneider & T.B. Smith, 2000. Diversification of rainforest faunas: an integrated molecular approach. Ann. Rev. Ecol. Syst. 31: 533–563.

    Google Scholar 

  • Orr, M.R. & T.B. Smith, 1998. Ecology and speciation. TREE 13: 502–506.

    Google Scholar 

  • Peterson, A.T., J. Soberon & V. Sanchez-Cordero, 1999. Conservatism of ecological niches in evolutionary time. Science 285: 1265–1267.

    Google Scholar 

  • Podos, J., 2001. Correlated evolution of morphology and vocal signal structure in Darwin' finches. Nature 409: 185–188.

    Google Scholar 

  • Prance, G.T. (ed.), 1982. Biological Diversification in the Tropics. Columbia University Press, New York.

    Google Scholar 

  • Price, T., 1998. Sexual selection and natural selection in bird speciation. Phil. Trans. R. Soc. Lond. B 353: 251–260.

    Google Scholar 

  • Reznick, D.N. & C.K. Ghalambor, 2001. The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112- 113: 183–198.

    Google Scholar 

  • Reznick, D.N., F.H. Shaw, F.H. Rodd & R.G. Shaw, 1997. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275: 1934–1937.

    Google Scholar 

  • Rice, R.R. & E.E. Hostert, 1993. Laboratory experiments on speciation: what have we learned in 40 years? Evolution 47: 1637–1653.

    Google Scholar 

  • Roy, M., 1997. Recent diversification in African greenbuls (Pycnonotidae: Andropadus) supports a montane speciation model. Proc. R. Soc. Lond. B 264: 1337–1344.

    Google Scholar 

  • Rundle, H.D., L. Nagel, J.W. Boughman & D. Schluter, 2000. Natural selection and parallel speciation in sticklebacks. Science 287: 306–308.

    Google Scholar 

  • Schluter, D., 1998. Ecological causes of speciation, pp. 114–129 in Endless Forms: Species and Speciation, edited by D.J. Howard & S.H. Berlocher. Oxford University Press, Oxford.

    Google Scholar 

  • Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford.

    Google Scholar 

  • Schluter, D. & J.N.M. Smith, 1986a. Natural selection on beak and body size in the song sparrow. Evolution 40: 221–231.

    Google Scholar 

  • Schluter, D. & J.N.M. Smith, 1986b. Genetic and phenotypic correlations in a natural population of song sparrows. Biol. J. Linn. Soc. 29: 23–36.

    Google Scholar 

  • Schneider, C., 2000. Natural Selection and Speciation. Proc. Natl. Acad. Sci. 97: 12398–12399.

    Google Scholar 

  • Schneider, C.J. & C. Moritz, 1999. Refugial isolation and evolution in Australia' wet tropics rainforest. Proc. Roy. Soc. Lond. B 266: 191–196.

    Google Scholar 

  • Schneider, C., T.B. Smith, B. Larison & C. Moritz, 1999. A test of alternative models of diversification in tropical rainforests: ecological gradients versus rainforest refugia. Proc. Natl. Acad. Sci. 94: 13869–13873.

    Google Scholar 

  • Schneider, C.J., M. Cunningham & C. Moritz, 1998. Comparative phylogeography and the history of vertebrates endemic to the Wet Tropics rainforest of Australia. Mol. Ecol. 7: 487–498.

    Google Scholar 

  • Shields, G.F. & A.C. Wilson, 1987. Calibration of mitochondrial DNA evolution in geese. J. Mol. Evol. 24: 212–217.

    Google Scholar 

  • Slabbekoorn, H. & T.B. Smith, 2000. Does bill size polymorphism affect courtship song characteristics in the African finch Pyrenestes ostrinus? Biol. J. Linn. Soc. 71: 737–753.

    Google Scholar 

  • Smith, T.B., 1987. Bill size polymorphism and intraspecific niche utilization in an African finch. Nature 329: 717–719.

    Google Scholar 

  • Smith, T.B., 1990a. Natural selection on bill characters in the two bill morphs of the African finch Pyrenestes ostrinus. Evolution 44: 832–842.

    Google Scholar 

  • Smith, T.B., 1990b. Patterns of morphological and geographic variation in trophic bill morphs of the African finch Pyrenestes. Biol. J. Linn. Soc. 41: 381–414.

    Google Scholar 

  • Smith, T.B., 1990c. Resource use by bill morphs of an African finch: evidence for intraspecific competition. Ecology 71: 1246–1257.

    Google Scholar 

  • Smith, T.B., 1991. Inter-and intra-specific diet overlap during lean times between Quelea erythrops and bill morphs of Pyrenestes ostrinus. Oikos 60: 76–82.

    Google Scholar 

  • Smith, T.B., 1993. Disruptive selection and the genetic basis of bill size polymorphism in the African finch, Pyrenestes. Nature 363: 618–620.

    Google Scholar 

  • Smith, T.B., 1997. Adaptive significance of the mega-billed form in the polymophic black-bellied seedcracker Pyrnestes ostrinus. Ibis 139: 382–387.

    Google Scholar 

  • Smith, T.B. & S. Skulason, 1996. Evolutionary significance of resource polymorphisms in fish, amphibians and birds. Ann. Rev. Ecol. Syst. 27: 111–133.

    Google Scholar 

  • Smith, T.B. & D. Girman, 2000. Reaching new adaptive peaks: evolution of bill size polymorphism in a African finch, pp. 139–156 in Adaptive Genetic Variation in the Wild, edited by T. Mousseau, B. Sinervo & J. Endler. Oxford University Press, Oxford.

    Google Scholar 

  • Smith, T.B., R.K. Wayne, D.J. Girman & M.W. Bruford, 1997. A role for ecotones in generating rainforest biodiversity. Science 276: 1855–1857.

    Google Scholar 

  • Stebbins, G.L., 1974. Flowering Plants, Evolution above the Species Level. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Thiollay, J.M., 1971. L'avifaune de la region de Lamto. Annales De L'Universite D'Abidjan, Ser. E. Ecologie IV: 1–132.

  • Turton, S.M. & G. J. Sexton, 1996. Environmental gradients across four rainforest-open forest boundaries in northeastern Queensland. Aust. J. Ecol. 21: 245–254.

    Google Scholar 

  • Wilson, A.C., R.L. Cann, S.M. Carr, M. George, U.B. Gyllensten, K.M. Helm-Bychowski, R.G. Higuchi, S.R. Palumbi, E.M. Prager, R.D. Sage & M. Stoneking, 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc. 26: 375–400.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, T.B., Schneider, C.J. & Holder, K. Refugial isolation versus ecological gradients. Genetica 112, 383–398 (2001). https://doi.org/10.1023/A:1013312510860

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013312510860

Navigation