Skip to main content
Log in

Effects of substrate coarseness and exposure on plant succession in uranium-mining wastes

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Speciesturnover and speed of primary revegetation on uranium-mining spoils aredescribed from the Centre-West part of Spain. Four 21-yr-old successional seresdiffering in substrate-grain size (broken/unbroken waste) andslope orientation (North/South) are compared. Qualitative andquantitative changes in species composition and the time required for recoveryof a terminal stage are analysed, using an undisturbed pasture as reference.Revegetation succession is faster on the broken waste and on the North slope.Moreover, there is a combined effect of both abiotic factors on the pattern andduration of revegetation succession. 195 plant taxa are recorded showing one offour patterns of change: (1) 'pioneer';(2) 'intermediate'; (3) 'latecoloniser'; (4) 'fluctuating'. Multivariateanalysisallows us to identify species following each of these patterns on eachsubstrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson D.W. 1977. Early stages of soil formation on glacial till mine spoils in a semi-arid climate. Geoderma 19: 11–19.

    Article  Google Scholar 

  • Aplet G.H., Hughes R.F. and Vitousek P.M. 1998. Ecosystem development on Hawaiian lava flows: biomass and species composition. J. Veg. Sci. 9: 17–26.

    Google Scholar 

  • Bakker J.P., Olff H., Willems J.H. and Zobel M. 1996. Why do we need permanent plots in the study of long-term vegetation dynamics? J. Veg. Sci. 7: 147–156.

    Google Scholar 

  • Borgegå rd S.O. 1990. Vegetation development abandoned gravel pits: effects of surrounding vegetation, substrate and regionality. J. Veg. Sci. 1: 675–682.

    Google Scholar 

  • Borkman R. 1981. Rates of change in vegetation during secondary succession. Vegetatio 47: 213–220.

    Google Scholar 

  • Bradshaw A.D. 1984. Ecological principles and land reclamation practice. Landscape Planning 11: 35–48.

    Google Scholar 

  • Burrows C.J. 1990. Processes of Vegetation Change. Unwin Hyman, London.

    Google Scholar 

  • Castroviejo S., Lainz M., Ló pez G., Montserrat P., Muñ oz F., Paiva J. et al. 1986–1993. Flora Iberica. C.S.I.C., Madrid.

    Google Scholar 

  • Cramer W. and Hytteborn H. 1987. The separation of fluctuation and long-term change in vegetation dynamics of a rising seashone. Vegetatio 69: 157–167.

    Google Scholar 

  • Del Moral R., Titus J.H. and Cook A.M. 1995. Early primary succession on Mount St. Helens, Washington, USA. J. Veg. Sci. 6: 107–120.

    Google Scholar 

  • Dorronsoro Fernández C.F. 1992. Suelos. In: Gó mez J.M. (ed.), El libro de las dehesas salmantinas. Junta de Castilla y Leó n, Salamanca, Spain, pp. 487–542.

    Google Scholar 

  • Down C.G. 1975. Soil development of colliery waste tips in relation to age. III. Chemical factors. J. Appl. Ecol. 12: 635–639.

    Google Scholar 

  • Drury W.H. and Nisbet I.C.T. 1973. Succession. J. Arnold Arbor. Har. Univ. 54: 331–368.

    Google Scholar 

  • Dunson W.A. and Travis J. 1991. The role of abiotic factors in community organization. Am. Nat. 138: 1067–1091.

    Google Scholar 

  • Ellery K.S. and Walker B.H. 1986. Growth characteristics of selected plant species on asbestos tailing from Msauli Mine, eastern Transvaal. South African Journal of Botany 52: 201–206.

    Google Scholar 

  • Gabriel K.R. 1971. The biplot graphic display of matrices with application to principal components analysis. Biometrika 58: 453–467.

    Google Scholar 

  • Galindo M.P. 1985. Contribuciones a la representació n simultáanea de datos multidimensionales. PhD Thesis, (unpublished).

  • Galindo M.P. 1986. Una alternativa de representació n simultánea: HJ-Biplot. Questiio 10: 13–23. Estudio comparativo de ordenació n de comunidades ecoló gicas basado en técnicas factoriales.

    Google Scholar 

  • Galindo M.P., Barrera I., Fernández-Gó mez M.J. and Martín A. 1996. Serie de estudios biló gicos 55–61.

  • Galindo M.P. and Cuadras C.M. 1986. Una extensió n del método Biplot y su relació n con otras técnicas. In: Publicaciones de Bioestadística y Biomatemática. Universidad de Barcelona n° 17, Barcelona, Spain.

    Google Scholar 

  • Gibson D.J., Johnson F.L. and Risser P.G. 1985. Revegetation of unreclaimed coal strip mines in Oklahoma. II. Plant Communities. Reclamation and Revegetation Research 4: 31–47.

    Google Scholar 

  • Glenn-Lewin D.C. 1980. The individualistic nature of plant community development. Vegetatio 43: 141–146.

    Google Scholar 

  • Golub G.H. and Reinsch C. 1970. Singular value decomposition and least squares solutions. Numer. Math 14: 403–420.

    Google Scholar 

  • Grime J.P. 1979. Plant Strategies and Vegetation Processes., Wiley, Chichester.

    Google Scholar 

  • Grime J.P. 1985. Towards a functional description of vegetation. In: White J. (ed.), The Population Structure of Vegetation. Dr W. Junk Pubs., Dordrecht.

    Google Scholar 

  • Grishin S.Y., del Moral R., Krestov P.V. and Verkholat V.P. 1996. Succession following the catastrophic eruption of Ksudach volcano (Kamchata, 1907). Vegetatio 127: 129–153.

    Google Scholar 

  • Grubb P.J. 1977. The maintenance of species-richness in plant communities. The importance of the regeneration niche. Biol. Rev. 52: 107–145.

    Article  Google Scholar 

  • Jenny H. 1941. Factors of Soil Formation. McGraw-Hill, New York.

    Google Scholar 

  • Jenny H. 1980. Soil Genesis with Ecological Perspectives. Springer-Verlag, New York.

    Google Scholar 

  • Johnson F.L., Gibson D.J. and Risser P.J. 1982. Revegetation of unreclaimed coal strip-mines in Oklahoma. I. Vegetation structure and soil properties. J. Appl. Ecol. 19: 453–463.

    Google Scholar 

  • Leisman G.A. 1957. A vegetation and soil chronosequence on the Mesabi iron range spoil banks, Minesota. Ecol. Monogr. 27: 221–245.

    Google Scholar 

  • Luken O.J. 1990. Directing Ecological Succession. Chapman & Hall, London.

    Google Scholar 

  • Major J. 1974. Kinds and rates of changes in vegetation and chronofunctions. In: Knapp R. (ed.), Vegetation Dynamics, Handbook of Vegetation Science 8. Junk, The Hague, pp. 7–18.

    Google Scholar 

  • Margalef R. 1968. Perspectives in Ecological Theory. Univ. Chicago Press, Chicago.

    Google Scholar 

  • Marrs R.H. and Bradshaw A.D. 1993. Primary succession on manmade wastes: the importance of resource acquisition. In: Miles J. and Walton D.W.H. (eds), Primary succession on land. Blackwell Scientific Publications, Oxford, pp. 221–247.

    Google Scholar 

  • Marrs R.H., Roberts R.D., Skeffington R.A. and Bradshaw A.D. 1981. Ecosystem development on naturally colonized china clay wastes. II. Nutrient compartmentation. J. Ecol. 69: 163–169.

    Google Scholar 

  • Martínez Ruiz C. 2000. Dynamics of debased land recovery of soil movements: plant succession and classification of species according to their colonization capacity. PhD Thesis.

  • Monk C.D. 1967. Tree species diversity in the eastern deciduous forest with particular reference to North central Florida. Amer. Nat. 101: 173–187.

    Google Scholar 

  • Motyka J., Dobrzanski B. and Zawadski S. 1950. Wstepne badania nad lakami polundnlowowschodneij Lubeiszczyzny. Ann. Univ. M. Curie-Jklodowska. Sec. E. 5. 13: 367–447.

    Google Scholar 

  • Odum E.P. 1969. The strategy of ecosystem development. Science 164: 262–270.

    PubMed  Google Scholar 

  • Olff H., Huisman J. and Van Tooren B.F. 1993. Species dynamics and nutrient accumulation during early primary succession in coastal sand dunes. J. Ecol. 81: 693–706.

    Google Scholar 

  • Olson J.S. 1958. Rates of succession and soil changes on Southern Lake Michigan sand dunes. Bot. Gaz. 119: 125–130.

    Google Scholar 

  • Pérez-Mellado V. and Galindo M.P. 1986. Biplot graphic display of Iberian and North African populations of Podarcis (Sauria: Lacertidae). In: RoČek Z. (ed.), Studies in Herpetology., Prague, pp. 197–200.

  • Pickett S.T.A. 1989. Space-for time substitution as an alternative to long-term studies. In: Likens G.E. (ed.), Long-term Studies in Ecology: Approaches and Alternatives. Springer-Verlag, New York, NY, pp. 110–135.

    Google Scholar 

  • Pielou E.C. 1969. An introduction to Mathematical Ecology. J. Willey, New York.

    Google Scholar 

  • Piha M.I., Vallack H.W., Reeler B.M. and Michael N. 1995. A low input approach to vegetation establishment on mine and coal ash wastes in semi-arid regions. I. Tin mine tailing in Zimbabwe. J. Appl. Ecol. 32: 372–381.

    Google Scholar 

  • Prach K., Pysek P. and Smilaver P. 1993. On the rate of succession. Oikos 66: 343–346.

    Google Scholar 

  • Puerto A., Rico M., García J.A. and Gó mez J.M. 1982. La Diversidad I: Formulació n de un concepto de profundas raíces ecoló gicas. Salamanca Revista Provincial de Estudios 14: 199–217.

    Google Scholar 

  • Puerto A., Rico M., García J.A., García R. and García B. 1984. La Diversidad II: tendencias encontradas para tres series de la sucesió n cultivo-pastizal en la zona de dehesas de la provincia de Salamanca. Salamanca Revista Provincial de Estudios 14: 219–242.

    Google Scholar 

  • Rebele F. 1992. Colonization and early succession on anthropogenic soils. J. Veg. Sci. 3: 201–208.

    Google Scholar 

  • Reiners W.A., Worley I.A. and Lawrence D.B. 1970. Plant diversity in a chronosequence at Glacier bay, Alaska. Ecology 55: 55–59.

    Google Scholar 

  • Rivas-Gonzalo J.C., Gutiérrez Y., Polanco A.M., Herrero E., Vicente J.L., Galindo P. et al. 1993. Biplot Analysis applied to enological parameters in the geographical classification of young red wines. Am. J. Enol. Vitic. 44: 302–308.

    Google Scholar 

  • Roberts R.D., Marrs R.H., Skeffington R.A. and Bradshaw A.D. 1981. Ecosystem development on naturally-colonized china clay wastes. I. Vegetation changes and overall accumulation of organic matter and nutrients. J. Ecol. 69: 153–161.

    Google Scholar 

  • Rydin H. and Borgegå rd S.O. 1988. Primary succession over sixty years on hundred-year old islets in Lake Hjälmaren, Sweden. Vegetatio 77: 159–168.

    Google Scholar 

  • Santos C., Muñ oz S.S., Gutiérrez Y., Herrero E., Vicente J.L., Galindo P. et al. 1991. Characterization of young red wines by application of HJ-Biplot Analysis to acthocyanin profiles. J. Agric. Food. Chem. 39: 1086–1090.

    Google Scholar 

  • Shannon C.E. and Weaver W. 1949. The Mathematical Theory of Communication. Univ. Illinois Press, Urbana.

    Google Scholar 

  • Sorensen T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skr. 5: 1–34.

    Google Scholar 

  • Tilman D. 1988. Plant Strategies and the Structure and Dynamics of Plant Communities. Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  • Titlyanova A.A. and Nironycheva-Tokareva N.P. 1990. Vegetation succession and biological turnover on coal-mining spoils. J. Veg. Sci. 1: 643–652.

    Google Scholar 

  • Tutin G.T., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M. et al. 1964–1980. Flora Europaea. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Ursic K.A., Kenkel N.C. and Larson D.W. 1997. Revegetation dynamics of cliff faces in abandoned limestone quarries. J. Appl. Ecol. 34: 289–303.

    Google Scholar 

  • Walton D.W.H. 1993. Primary succession on land. In: Miles J. and Wilton D.W.H. (eds), Blackwell Scientific Publications, Oxford, pp. 33–53.

    Google Scholar 

  • Whittaker R.H. 1965. Dominance and diversity in land plant communities. Science 147: 250–260.

    Google Scholar 

  • Whittaker R.H. 1975. Communities and Ecosystems. 2nd edn. Macmillan, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Ruiz, C., Fernández-Santos, B. & Gómez-Gutiérrez, J. Effects of substrate coarseness and exposure on plant succession in uranium-mining wastes. Plant Ecology 155, 79–89 (2001). https://doi.org/10.1023/A:1013208305393

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013208305393

Navigation