Skip to main content
Log in

Trade-Off Between Chemical and Biotic Antiherbivore Defense in the South East Asian Plant Genus Macaranga

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The plant genus Macaranga is known for its manifold mutualistic associations with ants. The plants provide food for the ants and in turn get protection from herbivores. Depending on the strength of the plant–ant interaction, the plant's investment in ants and the biotic defense derived from them is more or less effective. We conducted a comparative study on tannin content in 12 Macaranga species that were selected based on their associations with ants (three nonmyrmecophytes and nine myrmecophytes, three of which start their ontogeny as nonmyrmecophytes). Different developmental stages were investigated in three Macaranga species. Extracts of every individual plant analyzed for tannins were also tested for their effects on larval growth employing larvae of the common cutworm (Spodoptera littoralis). The studied Macaranga species differed significantly in their tannin contents as well as in the effects of their leaf extracts on the growth of S. littoralis larvae. A correlation analysis shows a connection between tannin contents and larval growth. High tannin contents and, thus more effective chemical defense, were observed in nonmyrmecophytic Macaranga species associated only facultatively with ants as compared to obligate myrmecophytes. Our study supports the hypothesis of a trade-off between chemical and biotic defense in the genus Macaranga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • ADLER, L. S. 2000. Alkaloid uptake increases fitness in a hemiparasitic plant via reduced herbivory and increased pollination. Am. Nat. 156:92-99.

    PubMed  Google Scholar 

  • AYRES, M. P., CLAUSEN, T. P., MACLEAN, S. F., REDMAN, A. M., and REICHARDT, P. B. 1997. Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696-1712.

    Google Scholar 

  • BEATTIE, A. J. 1985. The Evolutionary Ecology of Ant-Plant Mutualisms. Cambridge University Press, Cambridge.

    Google Scholar 

  • BERNAYS, E. A., COOPER-DRIVER, G., and BILGENER, M. 1989. Herbivores and plant tannins. Adv. Ecol. Res. 19:263-302.

    Google Scholar 

  • BIDAL, C. 1997. Impact d'évolution des défenses biotiques sur l'élaboration des défenses chimiques et mécaniques des plantes à fourmis. Unpublished DEA thesis. University of Montpellier.

  • BLATTNER, F. R., WEISING, K., BäNFER, G., MASCHWITZ, U., and FIALA, B. 2001. Molecular analysis of phylogenetic relationships among myrmecophytic Macaranga species (Euphorbiaceae). Mol. Phylo. Evol. 19:331-334.

    Google Scholar 

  • BRINKER, A. M. and SEIGLER, D. S. 1989. Methods for the detection and quantitative determination of cyanide in plant materials. Phytochem. Bull. 21:24-31.

    Google Scholar 

  • BRYANT, J. P., CHAPIN, S. F., III, and KLEIN, D. R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357-368.

    Google Scholar 

  • COLEY, P. D. 1986. Costs and benefits of defense by tannins in a neotropical tree. Oecologia 70:238-241.

    Google Scholar 

  • COLEY, P. D., BRYANT, J. P., and CHAPIN, F. S. 1985. Resource availability and plant antiherbivore defence. Science 230:895-899.

    Google Scholar 

  • DAVIDSON, D. W. and MCKEY, D. 1993. The evolutionary ecology of symbiotic ant-plant relationships. J. Hym. Res. 2:13-83.

    Google Scholar 

  • DAVIES, S. J. 1996. The comparative ecology of Macaranga (Euphorbiaceae). Thesis. Harvard University, Cambridge, Massachusetts.

    Google Scholar 

  • DAVIES, S. J. 1999. New species of Macaranga (Euphorbiaceae) section Pachystemon from Borneo. Kew Bull. 54:147-154.

    Google Scholar 

  • DAVIES, S. T. 1998. Photosynthesis of nine pioneer Macaranga species from Borneo in relation to life history. Ecology 79:2292-2308.

    Google Scholar 

  • FIALA, B. 1996. Ants benefit pioneer trees: The genus Macaranga as an example of ant-plant associations in dipterocarp forest ecosystems, pp. 102-123, in A. Schulze and D. Schöne (eds.). Dipterocarp Forest Ecosystems: Structure, Function, Ecology and Sustainable Management. Samarinda, Singapore.

    Google Scholar 

  • FIALA, B. and MASCHWITZ, U. 1990. Studies on the South East Asian ant-plant association Crematogaster borneensis/Macaranga: Adaptations of the ant-partner. Insectes Soc. 37:212-231.

    Google Scholar 

  • FIALA, B. and MASCHWITZ, U. 1991. Extrafloral nectaries in the genus Macaranga (Euphorbiaceae) in Malaysia: Comparative studies of their possible significance as predispositions for myrmecophytism. Biol. J. Linn. Soc. 44:287-305.

    Google Scholar 

  • FIALA, B. and MASCHWITZ, U. 1992a. Food bodies and their significance for obligate ant associations in the tree genus Macaranga (Euphorbiaceae). Bot. J. Linn. Soc. 110:61-75.

    Google Scholar 

  • FIALA, B. and MASCHWITZ, U. 1992b. Domatia as most important adaptations in the evolution of myrmecophytes in the palaeotropical tree genus Macaranga (Euphorbiaceae). Plant Syst. Evol. 180:53-64.

    Google Scholar 

  • FIALA, B., MASCHWITZ, U., THO, Y. P., and HELBIG, A. J. 1989. Studies on a South East Asian ant-plant association: Protection of Macaranga trees by Crematogaster borneensis. Oecologia 79:463-470.

    Google Scholar 

  • FIALA, B., MASCHWITZ, U., and THO, Y. P. 1991. The association between Macaranga and ants in South East Asia, pp. 263-270, in C. Huxley and R. Cutler (eds.). Interaction Between Ants and Plants. Oxford University Press, Oxford.

    Google Scholar 

  • FIALA, B., GRUNSKY, H., MASCHWITZ, U., and LINSENMAIR, K. E. 1994. Diversity of ant-plant interactions: Protective efficacy in Macaranga species with different degrees of ant association. Oecologia 97:186-192.

    Google Scholar 

  • FIALA, B., JAKOB, A., MASCHWITZ, U., and LINSENMAIR, K. E. 1999. Diversity, evolutionary specialisation and geographic distribution of a mutualistic ant-plant complex: Macaranga and Crematogaster in South East Asia. Biol. J. Linn. Soc. 66:305-331.

    Google Scholar 

  • FOLGARAIT, P. J. and DAVIDSON, D. W. 1994. Antiherbivore defense of myrmecophytic Cecropia under different light regimes. Oikos 71:305-320.

    Google Scholar 

  • FOLGARAIT, P. J. and DAVIDSON, D. W. 1995. Myrmecophytic Cecropia: Antiherbivore defenses under different nutrient treatments. Oecologia 104:189-206.

    Google Scholar 

  • GAUME, L. and MCKEY, D. 1999. An ant-plant mutualism and its host-specific parasite: Activity rhythms, young leaf patrolling, and effects on herbivores of two specialist plant-ants inhabiting the same myrmecophyte. Oikos 84:130-144.

    Google Scholar 

  • GAUME, L., MCKEY, D., and ANSTETT, M.-C. 1997. Benefits conferred by “timid” ants: Active antiherbivore protection of the rainforest tree Leonardoxa africana by the minute antPetalomyrmex phylax. Oecologia 112:209-216.

    Google Scholar 

  • GERSHENZON, J. 1994. The cost of plant chemical defense against herbivores: A biochemical perspective, pp. 105-173, in E. A. Bernays (ed.). Insect-Plant Interactions, Vol. 5. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • HAGERMAN, A. E. and BUTLER, L. G. 1991. Tannins and lignins, pp. 355-388, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites, 2nd ed., Vol. I: The Chemical Participants, Academic press, San Diego, California.

    Google Scholar 

  • HEIL, M. 1998. Quantitative Kosten-Nutzen-Analyse verschiedener Ameisen-Pflanzen-Assoziationen innerhalb der Gattung Macaranga. Wissenschaft & Technik Verlag, Berlin.

    Google Scholar 

  • HEIL, M., FIALA, B., ZOTZ, G., MENKE, P., and MASCHWITZ, U. 1997. Food body production in Macaranga triloba (Euphorbiaceae): A plant investment in antiherbivore defence via symbiotic ant partners. J. Ecol. 85:847-861.

    Google Scholar 

  • HEIL, M., FIALA, B., KAISER, W., and LINSENMAIR, K. E. 1998. Chemical contents of Macaranga food bodies: Adaptations to their role in ant attraction and nutrition. Funct. Ecol. 12:117-122.

    Google Scholar 

  • HEIL, M., FIALA, B., BOLLER, T., and LINSENMAIR, K. E. 1999. Reduced chitinase activities in ant-plants of the genus Macaranga. Naturwissenschaften 86:146-149.

    Google Scholar 

  • HEIL, M., STAEHELIN, C., and MCKEY, D. 2000. Low chitinase activity in Acacia myrmecophytes: A potential trade-off between biotic and chemical defenses? Naturwissenschaften 87:555-558.

    PubMed  Google Scholar 

  • HEIL, M., FIALA, B., MASCHWITZ, U., and LINSENMAIR, K. E. 2001. On benefits of indirect defense: Short-and long-term studies in antiherbivore protection via mutualistic ants. Oecologia 126:395-403.

    Google Scholar 

  • HERMS, D. A. and MATTSON, W. J. 1992. The dilemma of plants: To grow or to defend. Q. Rev. Biol. 67:283-335.

    Article  Google Scholar 

  • HöLLDOBLER, B. and WILSON, E. O. 1990. The Ants. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • HUXLEY, C. R. and CUTLER D. F. (eds.) 1991. Ant-Plant Interactions. Oxford University Press, Oxford.

    Google Scholar 

  • ITIOKA, T., NOMURA, M., INUI, Y., ITINO, T., and INOUE, T. 2000. Difference in intensity of ant defense among three species of Macaranga myrmecophytes in a southeast Asian dipterocarp forest. Biotropica 32:318-326.

    Google Scholar 

  • JANZEN, D. H. 1966. Coevolution of mutualism between ants and acacias in Central America. Evolution 20:249-275.

    Google Scholar 

  • JANZEN, D. H. 1973. Dissolution of mutualism between Cecropia and Azteca ants. Biotropica 5:15-28.

    Google Scholar 

  • LETOURNEAU, D. K. 1998. Ants, stem-borers, and fungal pathogens: Experimental tests of a fitness advantage in Piper plants. Ecology 79:593-603.

    Google Scholar 

  • LIN, J. H. 1993. Studies on tannins of the bark of M. tanarius (L.) Muell. Et Arg. J. Food Drug Anal. 1:273-280.

    Google Scholar 

  • LIN, J. H. 1994. Studies on tannins from the bark of M. sinensis (Baill.) Muell.-Arg. J. Food Drug Anal. 2:201-209.

    Google Scholar 

  • LIN, J. H., NONAKA, G. I., and NISHIOKA, I. 1990a. Tannins and related compounds XCIV. Isolation and characterization of seven new hydrolizable tannins from the leaves of Macaranga tanarius (L.) Muell. Et Arg. Chem. Pharm. Bull. (Tokyo) 38:1218-1223.

    Google Scholar 

  • LIN, J. H., ISHIMATSU, M., TANAKA, T., NONAKA, G. I., and NISHIOKA, I. 1990b. Tannins and related compounds XCIV. Structures of macarangins and macarinins. New hydrolyzable tannins possessing macaronyl and tergalloyl ester groups from the leaves of M. sinensis Baill. Muell.-Arg. Chem. Pharm. Bull. (Tokyo) 38:1844-1851.

    Google Scholar 

  • MARQUIS, R. J. and BRAKER, H. E. 1994. Plant-herbivore interactions: Diversity, specificity and impact, pp. 263-281, in L. McDade, G. H. Hartshorn, H. Hespenheide and K. Bawa (eds.). University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • NOMURA, M., ITIOKA, T., and ITINO, T. 2000. Variations in abiotic defense within myrmecophytic and nonmyrmecophytic species of Macaranga in a Bornean dipterocarp forest. Ecol. Res. 15:1-11.

    Google Scholar 

  • REHR, S. S., FEENY, P. P., and JANZEN, D. H. 1973. Chemical defense in central American non-ant acacias. J. Anim. Ecol. 42:405-416.

    Google Scholar 

  • RHOADES, D. F. 1979. Evolution of plant chemical defense against herbivores. pp. 4-53, in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites. Academic Press, San Diego, California.

    Google Scholar 

  • RICKSON, F. R. 1980. Developmental anatomy and ultrastructure of the ant-food bodies (Beccarian bodies) of M. triloba and M. hypoleuca (Euphorbiaceae). Am. J. Bot. 67:285-292.

    Google Scholar 

  • ROSENTHAL, G. A. and BERENBAUM, M. R. (eds.) 1991. Herbivores-Their Interactions with Secondary Plant Metabolites, Vol. 1: The Chemical Participants. Academic Press, New York.

    Google Scholar 

  • SAGERS, C. L. and COLEY, P. D. 1995. Benefits and costs of defense in a neotropical shrub. Ecology 76:1835-1843.

    Google Scholar 

  • SCHUPP, E. W. 1986. Azteca protection of Cecropia ant occupation benefits juvenile trees. Oecologia 70:379-385.

    Google Scholar 

  • SEIGLER, D. S. and EBINGER, J. E. 1987. Cyanogenic glycosides in ant-acacias of Mexico and Central America. South West Nat. 32:499-503.

    Google Scholar 

  • SIMMS, E. L. and RAUSHER, M. D. 1989. The evolution of resistance to herbivory in Ipomoea purpurea. II. Natural selection by insects and costs of resistance. Evolution 43:573-585.

    Google Scholar 

  • SRIVASTAVA, R. P. and PROKSCH, P. 1991. Contact toxicity and feeding inhibitory activity of chromones from Asteraceae against Spodoptera littoralis (Lepidoptera: Noctuidae). Entomol. Gener. 15:265-274.

    Google Scholar 

  • TURNER, M. 1995. Foliar defences and habitat adversity of threewoody plant communities in Singapore. Funct. Ecol. 9:279-284.

    Google Scholar 

  • WHITMORE, T. C. 1969. First thoughts on species evolution in Malayan Macaranga (studies in Macaranga III). Biol. J. Linn. Soc. 1:223-231.

    Google Scholar 

  • WHITMOTE, T. C. 1975. Macaranga, pp. 140-159, in H. K. Air-Shaw (ed.). The Euphorbiaceae of Borneo. Kew Bulletin Additional. Series 4. Kew Gardens, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eck, G., Fiala, B., Linsenmair, K.E. et al. Trade-Off Between Chemical and Biotic Antiherbivore Defense in the South East Asian Plant Genus Macaranga. J Chem Ecol 27, 1979–1996 (2001). https://doi.org/10.1023/A:1012234702403

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012234702403

Navigation