Skip to main content
Log in

Characterization of spontaneous gacS and gacA regulatory mutants of Pseudomonas fluorescens biocontrol strain CHA0

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

In Pseudomonas fluorescens strain CHA0, the response regulator gene gacA controls expression of extracellular enzymes and antifungal secondary metabolites, which are important for this strain's biocontrol activity in the plant rhizosphere. Two Tn5 insertion mutants of strain CHA0 that had the same pleiotropic phenotype as gacA mutants were complemented by the gacS sensor kinase gene of P. syringae pv. syringae as well as that of P. fluorescens strain Pf-5, indicating that both transposon insertions had occurred in the gacS gene of strain CHA0. This conclusion was supported by Southern hybridisation using a gacS probe from strain Pf-5. Overexpression of the wild-type gacA gene partially compensated for the gacS mutation, however, the overexpressed gacA gene was not stably maintained, suggesting that this is deleterious to the bacterium. Strain CHA0 grown to stationary phase in nutrient-rich liquid media for several days accumulated spontaneous pleiotropic mutants to levels representing 1.25% of the population; all mutants lacked key antifungal metabolites and extracellular protease. Half of 44 spontaneous mutants tested were complemented by gacS, the other half were restored by gacA. Independent point and deletion mutations arose at different sites in the gacA gene. In competition experiments with mixtures of the wild type and a gacA mutant incubated in nutrient-rich broth, the mutant population temporarily increased as the wild type decreased. In conclusion, loss of gacA function can confer a selective advantage on strain CHA0 under laboratory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aigle B, Schneider D, Morilhat C, Vandewiele D, Dary A, Holl A-C, Simonet J-M & Decaris B (1996) An amplifiable and deletable locus of Streptomyces ambofaciens RP181110 contains a vary large gene homologous to polyketide synthase genes. Microbiology 142: 2815-2824

    Google Scholar 

  • Albright LM, Huala E & Ausubel FM (1989) Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Annu. Rev. Genet. 23: 311-336

    Google Scholar 

  • Blumer C, Heeb S, Pessi G & Haas D (1999) Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc. Natl. Acad. Sci. USA 96: 14073-14078

    Google Scholar 

  • Corbell N & Loper JE (1995) A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J. Bacteriol. 177 6230-6236

    Google Scholar 

  • Del Sal G, Manfioletti G & Schneider C (1988) A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Res. 16: 9878

    Google Scholar 

  • Duffy BK & Défago G (1998) A Fusarium pathogenicity factor blocks antibiotic biosynthesis by antagonistic pseudomonads. IOBC WPRS Bull. 21(9): 145-148

    Google Scholar 

  • Duffy BK & Défago G (1995) Influence of cultural conditions on spontaneous mutations in Pseudomonas fluorescens CHA0. Phytopathology 85: 1146

    Google Scholar 

  • Duffy BK & Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65: 2429-2438

    Google Scholar 

  • Eriksson ARB, Andersson RA, Pirhonen M & Palva ET (1998) Two-component regulators involved in the global control of virulence in Erwinia carotovora subsp. carotovora. Mol. Plant-Microbe Interact. 11: 743-752

    Google Scholar 

  • Frederick RD, Chin J, Bennetzen JL & Handa AK (1997) Identification of a pathogenicity locus, rpfA, in Erwinia carotovora subsp. carotovora that encodes a two-component sensor-regulator protein. Mol. Plant-Microbe Interact. 10: 407-415

    Google Scholar 

  • Gaffney TD, Lam ST, Ligon J, Gates K, Frazelle A, DiMaio J, Hill S, Goodwin S, Torkewitz N, Allshouse AM, Kempf H-J & Becker JO (1994) Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. Mol. Plant-Microbe Interact. 7: 455-463

    Google Scholar 

  • Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR & Phillips GB (1981) Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Grewal SIS, Han B & Johnstone K (1995) Identification and characterization of a locus which regulates multiple functions in Pseudomonas tolaasii, the cause of brown blotch disease of Agaricus bisporus. J. Bacteriol. 177: 4658-4668

    Google Scholar 

  • Gubba S, Xie Y-H & Das A (1995) Regulation of Agrobacterium tumefaciens virulence gene expression: Isolation of a mutation that restores virGD52E function. Mol. Plant-Microbe Interact. 8: 788-791

    Google Scholar 

  • Haas D, Blumer C & Keel C (2000) Biocontrol ability of fluorescent pseudomonads genetically dissected: importance of positive feedback regulation. Curr. Opin. Biotechnol. 11: 290-297

    Google Scholar 

  • Handelsman J & Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8: 1855-1869

    Google Scholar 

  • Hirano SS, Ostertag EM, Savage SA, Baker LS, Willis DK & Upper CD (1997) Contribution of the regulatory gene lemA to field fitness of Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 63: 4304-4312

    Google Scholar 

  • Hrabak EM & Willis DK (1992) The gacS gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J. Bacteriol. 174: 3011-3020

    Google Scholar 

  • Jin S, Prusti RK, Roitsch T, Ankenbauer RG & Nester EW (1990) Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: Essential role in biological activity of VirG. J. Bacteriol. 172: 4945-4950

    Google Scholar 

  • Johnston C, Pegues DA, Hueck CJ, Lee CA & Miller SI (1996) Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated response-regulator superfamily. Mol. Microbiol. 22: 715-727

    Google Scholar 

  • Keel C & Défago G (1997) Interactions between beneficial soil bacteria and root pathogens: Mechanisms and ecological impact. In: Gange AC & Brown VK (Eds). Multitrophic interactions in terrestrial systems (pp 27-46). Blackwell Scientific Publishers, London

    Google Scholar 

  • Keel C, Voisard C, Berling CH, Kahr G & Défago G (1989) Iron suf-ficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology 79: 584-589

    Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D & Défago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-Microbe Interact. 5: 4-13

    Google Scholar 

  • King EO, Ward MK & Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44: 301-307

    Google Scholar 

  • Kitten T, Kinscherf TG, McEvoy JL & Willis DK (1998) A newlyidentified regulator is required for virulence and toxin production in Pseudomonas syringae. Mol. Microbiol. 28: 917-930

    Google Scholar 

  • Laville J, Voisard C, Keel C, Maurhofer M, Défago G & Haas D (1992) Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc. Natl. Acad. Sci. USA 89: 1562-1566

    Google Scholar 

  • Liao C-H, McCallus DE, Wells JM, Tzean S-S & Kang G-Y (1996) The repB gene required for production of extracellular enzymes and fluorescent siderophores in Pseudomonas viridiflava is an analog of the gacA gene of Pseudomonas syringae. Can. J. Microbiol 42: 177-182

    Google Scholar 

  • Ligon JM, Hill DS, Hammer PE & Torkewitz NR (1999) Genetic modifications of Pseudomonas that enhance biological disease control. Acta Horticulturae 504: 53-60

    Google Scholar 

  • Maurhofer M, Keel C, Haas D & Défago G (1994) Pyoluteorin production by Pseudomonas fluorescens strain CHA0 is involved in the suppression of Pythium damping-off of cress but not of cucumber. Eur. J. Plant Pathol. 100: 221-232

    Google Scholar 

  • Moore JB, Shiau S-P & Reitzer LJ (1993) Alterations of highly conserved residues in the regulatory domain of nitrogen regulator I (NtrC) of Escherichia coli. J. Bacteriol. 175: 2692-2701

    Google Scholar 

  • Oberhänsli T, Défago G & Haas D (1991) Indole-3-acetic acid (IAA) synthesis in the biocontrol of strain CHA0 of Pseudomonas fluorescens: role of tryptophan side chain oxidase. J. Gen. Microbiol. 137: 2273-2279

    Google Scholar 

  • Parkinson JS & Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26: 71-112

    Google Scholar 

  • Perraud A-L, Weiss V & Gross R (1999) Signalling pathways in two-component phosphorelay systems. Trends Microbiol. 7: 115-120

    Google Scholar 

  • Pirrung MC (1999) Histidine kinases and two-component signal transduction systems. Chemistry & Biology 6: R167-R175

    Google Scholar 

  • Reimmann C, Beyeler M, Latifi A, Winteler H, Foglino M, Lazdunski A & Haas D (1997) The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol. Microbiol. 24: 309-319

    Google Scholar 

  • Reyrat J-M, David M, Batut J & Boistard P (1994) FixL of Rhizobium meliloti enhances the transcriptional activity of a mutant FixJD54N protein by phosphorylation of an alternate residue. J. Bacteriol. 176: 1969-1976

    Google Scholar 

  • Rich JJ, Kinscherf TG, Kitten T & Willis DK (1994) Genetic evidence that the gacA gene encodes the cognate response regulator for the gacS sensor in Pseudomonas syringae. J. Bacteriol. 176: 7468-7475

    Google Scholar 

  • Sacherer P, Défago G & Haas D (1993) Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol. Lett. 116: 155-160

    Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Sanger F, Nicklen S & Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467

    Google Scholar 

  • Scheeren-Groot EP, Rodenburg KW, Den Dulk-Ras A, Turk SCHJ & Hooykaas PJJ (1994) Mutational analysis of the transcriptional activator VirG of Agrobacterium tumefaciens. J. Bacteriol. 176: 6418-6426

    Google Scholar 

  • Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, Reimmann C, Notz R, Défago G, Haas D & Keel C (2000) Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J. Bacteriol. 182: 1215-1225

    Google Scholar 

  • Stanisich VA & Holloway BW (1972) A mutant sex factor of Pseudomonas aeruginosa. Genet. Res. 19: 91-108

    Google Scholar 

  • Staskawicz B, Dahlbeck D, Keen N & Napoli C (1987) Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J. Bacteriol. 169: 5789-5794

    Google Scholar 

  • Thomashow LS & Weller DM (1995) Current concepts in the use of introduced bacteria for biological disease control. In: Stacey G & Keen N (Eds). Plant-microbe interactions, vol. 1 (pp 187-235). Chapman & Hall, New York, NY

    Google Scholar 

  • Voisard C, Rella M & Haas D (1988) Conjugative transfer of plasmid RP1 to soil isolates of Pseudomonas fluorescens is facilitated by certain large RP1 deletions. FEMS Microbiol. Lett. 55: 9-14

    Google Scholar 

  • Voisard C, Keel C, Haas D & Défago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8: 351-358

    Google Scholar 

  • Voisard C, Bull CT, Keel C, Laville J, Maurhofer M, Schnider U, Défago G & Haas D (1994) Biocontrol of root diseases by Pseudomonas fluorescens CHA0: current concepts and experimental approaches. In: O'Gara F, Dowling D & Boesten B (Eds). Molecular ecology of rhizosphere microorganisms (pp 67-89). VCH Publishers, Weinheim, Germany

    Google Scholar 

  • Vogel HJ & Bonner D (1956) Acetylornithinase of Escherichia coli: Partial purification and some properties. J. Biol. Chem. 218: 97-106

    Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26: 379-407

    Google Scholar 

  • Whistler CA, Corbell NA, Sarniguet A, Ream W & Loper JE (1998) The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor σS and the stress response in Pseudomonas fluorescens Pf-5. J. Bacteriol. 180: 6635-6641

    Google Scholar 

  • Yanisch-Perron C, Vieira J & Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103-119

    Google Scholar 

  • Zambrano MM & Kolter R (1996) GASPing for life in stationary phase. Cell 86: 181-184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Keel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bull, C.T., Duffy, B., Voisard, C. et al. Characterization of spontaneous gacS and gacA regulatory mutants of Pseudomonas fluorescens biocontrol strain CHA0. Antonie Van Leeuwenhoek 79, 327–336 (2001). https://doi.org/10.1023/A:1012061014717

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012061014717

Navigation