Skip to main content
Log in

A physical context for gelatinous zooplankton aggregations: a review

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The magnitude and extent of jellyfish blooms are influenced not only by the biology and behavior of the animal, but also by the geographic setting and physical environment. Hydrography alone is often thought to cause or favor gelatinous zooplankton aggregations, however, it is clear that interactions between biology of the animal and physics of the water are very important sources of population variations, especially at local scales. We summarize the role of physical processes and phenomena that promote aggregations of gelatinous zooplankton. We have identified and discussed a suite of physical gradients that can be perceived by gelatinous zooplankton. These include light, gravity, temperature, salinity, pressure and turbulence. A recurring theme is accumulation of jellyfish around physical discontinuities such as fronts (shelf-break, upwelling, tidal and estuarine) and pycnoclines (thermoclines and haloclines). Interestingly, there are few data to suggest that large-scale, quasi-stationary features, such as the largest oceanic fronts, serve to physically aggregate gelatinous animals at a similar scale. Rather, examples of local aggregations appear to dominate the literature. We also discuss various jellyfish behaviors that are theorized to promote aggregation, feeding and reproduction in relation to physical discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alldredge, A. L., 1982. Aggregation of spawning appendicularians in surface windrows. Bull. mar. Sci. 32: 250–254.

    Google Scholar 

  • Anderson, P. A. V. & G. O. Mackie, 1977. Electrically coupled, photosensitive neurons control swimming in a jellyfish. Science 197: 186–188.

    PubMed  Google Scholar 

  • Arai, M. N., 1973. Behavior of planktonic coelenterates, Sarsia tubulosa, Philiadium gregarium and Pleurobrachia pileus in salinity discontinuity layers. J. Fish. Res. Bd Can. 30: 1105–1110.

    Google Scholar 

  • Arai, M. N., 1976. Behavior of planktonic coelenterates in temperature and salinity discontinuity layers. In Mackie, G.O. (ed.), Coelenterate Ecology and Behavior, Plenum Press, New York: 211–217.

    Google Scholar 

  • Arai, M. N., 1992. Active and passive factors affecting aggregations of hydromedusae: a review. In Bouillon, J., F. Boero, F. Cicogna, J. M. Gili & R. G. Hughes (eds), Aspects of Hydrozoan Biology, Sci. Mar. 56: 99–108.

  • Arai, M. N., 1997. A Functional Biology of Scyphozoa. Chapman & Hall, New York: 316 pp.

    Google Scholar 

  • Arkett, S. A., 1985. The shadow response of a hydromedusan (Polyorchis penicillatus): behavioral mechanisms controlling diel and ontogenetic vertical migration. Biol. Bull. 169: 297–312.

    Google Scholar 

  • Backus, R. H., R. C. Clark & A. S. Wing, 1965. Behaviour of certain marine organisms during the solar eclipse of July 20, 1963. Nature 205: 989–991.

    Google Scholar 

  • Bailey, K. M. & R. S. Batty, 1983. A laboratory study of predation by Aurelia aurita on larval herring (Clupea harengus): experimental observations compared with model predictions. Mar. Biol. 72: 295–301.

    Google Scholar 

  • Barham, E. G., 1963. Siphonophores and the deep scattering layer. Science 140: 826–828.

    Google Scholar 

  • Bayly, I. A. E., 1986. Aspects of diel vertical migration in zooplankton, and its enigma variations. In Deckker, P. D. & W. D. Williams (eds), Limnology in Australia, CSIRO, Melbourne: 349–368.

    Google Scholar 

  • Bidigare, R. R. & D. C. Biggs, 1980. The role of sulfate exclusion in buoyancy maintenance by siphonophores and other oceanic gelatinous zooplankton. Comp. Biochem. Physiol. 66A: 467–471.

    Google Scholar 

  • Bieri, R., 1977. The ecological significance of seasonal occurrence and growth rate of Velella (Hydrozoa). Publ. Seto Mar. Biol. Lab. 24: 63–76.

    Google Scholar 

  • Brodeur, R. D., 1998. In situ observations of the association between juvenile fishes and scyphomedusae in the Bering Sea. Mar. Ecol. Prog. Ser. 163: 11–20.

    Google Scholar 

  • Brodeur, R. D., M. T. Wilson & J. M. Napp, 1997. Distribution of juvenile Pollock relative to frontal structure near the Pribilof Islands, Bering Sea. In Forage Fishes in Marine Ecosystems, American Fisheries Society, Lowell Wakefield Fisheries Symposium Series, no. 14: 573–589.

  • Coachman, L. K., 1986. Circulation, water mass, and fluxes on the southeastern Bering Sea shelf. Cont. Shelf Res. 5: 23–108.

    Google Scholar 

  • Coyle, K. O. & R. T. Cooney, 1993. Water column sound scattering and hydrography around the Pribilof Islands, Bering Sea. Cont. Shelf Res. 13: 803–827.

    Google Scholar 

  • Davis, C. S., S. M. Gallager & A. R. Solow, 1992. Microaggregations of oceanic plankton observed by towed video microscopy. Science 257: 230–232.

    Google Scholar 

  • Dawson, M. N, L. E. Martin & L. K. Penland, 2001. Jellyfish swarms, tourists and the Christ-child. Hydrobiologia 451 (Dev. Hydrobiol. 155): 131–144.

    Google Scholar 

  • Deibel, D., 1985. Blooms of the pelagic tunicate Dolioletta gegenbauri: are they associated with Gulf Stream frontal eddies? J. mar Res. 43: 211–26.

    Google Scholar 

  • Enright, J. T. & W. M. Hamner. 1967. Vertical diurnal migration and endogenous rhythmicity. Science 157: 137–141.

    Google Scholar 

  • Evans, F., 1986. Velella velella (L), the 'by-the-wind-sailor' in the North Pacific Ocean in 1985. Mar. Obs. 56: 196–200.

    Google Scholar 

  • Federov, K. N., 1983. The physical nature and structure of oceanic fronts. Lecture Notes on Coastal and Estuarine Studies 19: 333 pp.

  • Frank, T. M. & E. A. Widder, 1997. The correlation of downwelling irradiance and staggered vertical migration patterns of zooplankton in Wilkinson Basin, Gulf of Maine. J. Plankton Res. 19: 1975–1991.

    Google Scholar 

  • Franks, P. J. S., 1992. Phytoplankton blooms at fronts: patterns, scales and physical forcing mechanisms. Rev. aquat. Sci. 6: 121–137.

    Google Scholar 

  • Franqueville, C., 1971. Macroplancton profound (invertébrés) de la Méditerranée Nord-occidentale. Tethys 3: 11–56.

    Google Scholar 

  • Gorsky, G., N. Lins da Silva, S. Dallot, Ph. Laval, J. C. Braconnot & L. Prieur, 1991. Midwater tunicates: are they related to the permanent front of the Ligurian Sea (NW Mediterranean)? Mar. Ecol. Prog. Ser. 74: 195–204.

    Google Scholar 

  • Goy, J., P. Morand & M. Etienne, 1989. Long-term fluctuations of Pelagia noctiluca (Cnidaria, Scyphomedusa) in the western Mediterranean Sea. Prediction by climatic variables. Deep-Sea Res. 36: 269–279.

    Google Scholar 

  • Graham, W. M., 1993. Spatio-temporal scale assessment of an 'upwelling shadow' in northern Monterey Bay, California. Estuaries 16: 83–91.

    Google Scholar 

  • Graham, W. M., 1994. The physical oceanography and ecology of upwelling shadows. Doctoral dissertation, Department of Biology, University of California, Santa Cruz, 204 pp.

    Google Scholar 

  • Graham, W. M., J. G. Field & D. C. Potts, 1992. Persistent “upwelling shadows” and their influence on zooplankton distributions. Mar. Biol. 114: 561–570.

    Google Scholar 

  • Graham, W. M. & J. L. Largier, 1997. Upwelling shadows as nearshore retention sites: the example of northern Monterey Bay. Cont. Shelf Res. 17: 509–532.

    Google Scholar 

  • Hamner, W.M., 1985. The importance of ethology for investigations of marine zooplankton. Bull. mar. Sci. 37: 414–424.

    Google Scholar 

  • Hamner, W. M., 1995. Sensory ecology of scyphomedusae. Mar. Fresh. Behav. Physiol. 26: 101–118.

    Google Scholar 

  • Hamner, W. M., L. P. Madin, A. L. Alldredge, R. W. Gilmer & P. P. Hamner, 1975. Underwater observations of gelatinous zooplankton: sampling problems, feeding biology and behavior. Limnol. Oceanogr. 20: 907–917.

    Google Scholar 

  • Hamner, W. M. & I. R. Hauri, 1981. Long-distance horizontal migrations of zooplankton (scyphomedusae: Mastigias). Limnol. Oceanogr. 26: 414–423.

    Google Scholar 

  • Hamner, W. M., R. W. Gilmer & P. P. Hamner, 1982. The physical, chemical, and biological characteristics of a stratified, saline, sulfide lake in Palau. Limnol. Oceanogr. 27: 896–909.

    Google Scholar 

  • Hamner, W. M. & D. Schneider, 1986. Regularly spaced rows of medusae in the Bering Sea: role of Langmuir circulation. Limnol. Oceanogr. 31: 171–177.

    Google Scholar 

  • Hamner, W. M., P. P. Hamner & S. W. Strand, 1994. Sun-compass migration by Aurelia aurita (Scyphozoa): population retention and reproduction in Saanich Inlet, British Columbia. Mar. Biol. 119: 347–356.

    Google Scholar 

  • Harder, W., 1968. Reactions of plankton organisms to water strati-fication. Limnol. Oceanogr. 13: 156–168.

    Google Scholar 

  • Jacobs, W., 1937. Beobachtungen über das Schwebender der Siphonophoren. Z. vergleich. Physiol. 24: 583–601.

    Google Scholar 

  • Kennedy, F. S. Jr., 1972. Distribution and abundance of Physalia in Florida waters. Florida Department of Natural Resources, Mar. Res. Lab., Prof. Pap. Ser. 18: 1–38.

    Google Scholar 

  • Kingsford, M. J., E. Wolanski & J. H. Choat, 1991. Influence of tidally induced fronts and Langmuir circulations on distribution and movements of presettlement fishes around a coral reef. Mar. Biol. 109: 167–180.

    Google Scholar 

  • Knight-Jones, E. W. & E. Morgan, 1966. Responses of marine animals to changes in hydrostatic pressure. Oceanogr. mar. Biol. ann. Rev. 4: 267–299.

    Google Scholar 

  • Kopacz, U., 1994. Evidence for tidally-induced vertical migration of some gelatinous zooplankton in the Wadden Sea area near Split. Helgol. Wiss Meeresunters. 48: 333–342.

    Google Scholar 

  • Kremer, P., 1994. Patterns of abundance for Mnemiopsis in U.S. coastal waters: a comparative overview. ICES J. mar. Sci. 51: 347–354.

    Google Scholar 

  • Larson, R. J., 1990. Scyphomedusae and cubomedusae from the eastern Pacific. Bull. mar. Sci. 47: 546–556.

    Google Scholar 

  • Larson, R. J., 1992. Riding Langmuir circulations and swimming in circles: a novel form of clustering behavior by the scyphomedusa Linuche unguiculata. mar. Biol. 112: 229–235.

    Google Scholar 

  • Larson, R. J., G. I. Matsumoto, L. P. Madin & L. M. Lewis, 1992. Deep-sea benthic and benthopelagic medusae, recent observations from submersibles and a remotely operated vehicle. Bull. mar. Sci. 51: 277–286.

    Google Scholar 

  • Lenarz, W. H., D. A. VenTresca, W. M. Graham, F. B. Schwing & F. Chavez, 1995. Explorations of El Niño events and associated biological population dynamics off central California. CalCOFI Rep. 36: 106–119.

    Google Scholar 

  • MacGregor, J. M. & E. D. Houde, 1996. Onshore-offshore pattern and variability in distribution and abundance of bay anchovy Anchoa mitchilli eggs and larvae in Chesapeake Bay. mar. Ecol. Prog. Ser. 138: 15–25.

    Google Scholar 

  • Mackas, D. L., K. L. Denman & M. R. Abbot, 1985. Plankton patchiness: biology in the physical vernacular. Bull. mar. Sci. 37: 652–674.

    Google Scholar 

  • Mackie, G. O., R. J. Larson, K. S. Larson & L. M. Passano, 1981. Swimming and vertical migration of Aurelia aurita (L.) in a deep tank. Mar. Behav. Physiol. 7: 321–329.

    Google Scholar 

  • Malej, A., 1989. Behavior and trophic ecology of the jellyfish Pelagia noctiluca (Forsskål, 1775). J. exp. mar. Biol. Ecol. 126: 259–270.

    Google Scholar 

  • McCloskey, L. R., L. Muscatine & F. P. Wilkerson, 1994. Daily photosynthesis, respiration, and carbon budgets in a tropical marine jellyfish (Mastigias sp.). Mar. Biol. 19: 13–22.

    Google Scholar 

  • Mianzan, H., D. Sorarraín, J. Burnett & L. Lutz, In press. Mucocutaneous junctional and lexural paresthesias caused by the holoplanktonic trachymedusae Liriope tetraphylla. Dermatology.

  • Miller, R. J., 1974. Distribution and biomass of an estuarine ctenophore population, Mnemiopsis leidyi (A. Agassiz). Chesapeake Sci. 15: 1–8.

    Google Scholar 

  • Mills, C. E., 1981. Diversity of swimming behaviors in hydromedusae as related to feeding and utilization of space. Mar. Biol. 64: 185–189.

    Google Scholar 

  • Mills, C. E., 1984. Density is altered in hydromedusae and ctenophores in response to changes in salinity. Biol. Bull. 166: 206–215.

    Google Scholar 

  • Mills, C. E. & R. G. Vogt, 1984. Evidence that ion regulation in hydromedusae and ctenophores does not facilitate vertical migration. Biol. Bull. 166: 216–227.

    Google Scholar 

  • Mills, C. E. & J. Goy, 1988. In situ observations of the behavior of mesopelagic Solmissus narcomedusae (Cnidaria, Hydrozoa). Bull. mar. Sci. 43: 739–751.

    Google Scholar 

  • Mills, C. E., P. R. Pugh, G. R. Harbison & S. H. D. Haddock, 1996. Medusae, siphonophores and ctenophores of the Alboran Sea, southwestern Mediterranean. Sci. Mar. 60: 145–163.

    Google Scholar 

  • Monger, B. C., S. Chinniah-Chandy, E. Meir, S. Billings, C. H. Greene & P. H. Wiebe, 1998. Sound scattering by the gelatinous zooplankters Aequorea victoria and Pleurobrachia bachei. Deep-Sea Res. 45: 1255–1271.

    Google Scholar 

  • Muscatine, L. & R. E. Marian, 1982. Dissolved inorganic nitrogen flux in symbiotic and nonsymbiotic medusae. Limnol. Oceanogr. 27: 910–917.

    Google Scholar 

  • Muscatine, L., F. P. Wilkerson & L. R. McCloskey, 1986. Regulation of population density of symbiotic algae in a tropical marine jellyfish (Mastigias sp.). Mar. Ecol. Prog. Ser. 32: 279–290.

    Google Scholar 

  • Nielsen, A. S., A. M. Pedersen & H. U. Rissgård, 1997. Implications of density driven currents for interaction between jellyfish (Aurelia aurita) and zooplankton in a Danish fjord. Sarsia 82: 297–305.

    Google Scholar 

  • Owen, R. W. Jr., 1966. Small-scale, horizontal vortices in the surface layer of the sea. J. mar. Res. 24: 56–66.

    Google Scholar 

  • Owen, R.W., 1981. Fronts and eddies in the sea: mechanisms, interactions and biological effects. In Longhurst, A. R. (ed.), Analysis of marine ecosystems. Academic Press, New York: 197–233.

    Google Scholar 

  • Owen, R. W., 1989. Microscale and finescale variations of small plankton in coastal and pelagic environments. J. mar. Res. 47: 197–240.

    Google Scholar 

  • Paffenhöffer, G.-A., T. B. Stewart, M. J. Youngbluth & T. G. Bailey, 1991. High-resolution vertical profiles of pelagic tunicates. J. Plankton Res. 13: 971–981.

    Google Scholar 

  • Pagès, F. & J-M. Gili, 1991. Vertical distribution of epipelagic siphonophores at the confluence between Benguela waters and the Angola Current over 48 hours. Hydrobiologia 216/217: 355–362.

    Google Scholar 

  • Pagès, F. & J-M. Gili, 1992. Influence of the thermocline on the vertical migration of medusae during a 48 hr sampling period. S. Afr. J. Zool. 27: 50–59.

    Google Scholar 

  • Pagès, F. & S. B. Schnack-Schiel, 1996. Distribution patterns of the mesoplankton, principally siphonophores and medusae, in the vicinity of the Antarctic Slope Front (eastern Weddell Sea). J. mar. Syst. 9: 231–248.

    Google Scholar 

  • Pagès, F., M. G. White & P. G. Rodhouse, 1996. Abundance of gelatinous carnivores in the nekton community of the Antarctic Polar Frontal Zone in summer 1994. Mar. Ecol. Prog. Ser. 141: 139–147.

    Google Scholar 

  • Pagès, F., H. E. González, M. Ramón, M. Sobarzo & J. M. Gili, 2001. Gelatinous zooplankton assemblages associated with water masses in the Humboldt Current System and potential predatory impact by Bassia bassensis (Siphonophora: Calycophorae). Mar. Ecol. Prog. Ser.

  • Parrish, J. K. & W. M. Hamner, 1997. Animal Groups in Three Dimensions. Cambridge Univ. Press, Cambridge: 336 pp.

    Google Scholar 

  • Parrish, J. K. & L. Edelstein-Keshet, 1999. Complexity, pattern and evolutionary trade-offs in animal aggregation. Science 284: 99–101.

    PubMed  Google Scholar 

  • Pingree, R. D., P. M. Holligan & R. N. Head, 1977. Survival of dinoflagellate blooms in the western English Channel. Nature 265: 266–269.

    Google Scholar 

  • Pugh P. R., 1977. Some observations on the vertical migrations and geographical distribution of the siphonophores in the warm waters of the North Atlantic Ocean. In Proccedings of the Symposium on Warm Water Zooplankton. Natl. Inst. Oceanogr. Goa, India: 362–378.

  • Purcell, J. E. & L. P. Madin, 1991. Diel patterns of migration, feeding, and spawning by salps in the subarctic Pacific. Mar. Ecol. Prog. Ser. 73: 211–217.

    Google Scholar 

  • Purcell, J. E., D. A. Nemazie, S. E. Dorsey, E. D. Houde & J. C. Gamble, 1994. Predation mortality of bay anchovy Anchoa mitchilli and larvae due to scyphomedusae and ctenophores in Chesapeake Bay. Mar. Ecol. Prog. Ser. 114: 47–58.

    Google Scholar 

  • Purcell. J. E., E. D. Brown, K. D. E. Stokesbury, L.H. Haldorson & T. C. Shirley, 2000. Aggregations of the jellyfish Aurelia labiata: abundance, distribution, association with age-0 walleye pollock, and behaviors promoting aggregation in Prince William Sound, Alaska, U.S.A. Mar. Ecol. Prog. Ser. 195: 145–158.

    Google Scholar 

  • Purcell J. E., D. L. Breitbug, M. D. Decker, W. M. Graham, M.J. Youngbluth & K. A. Raskoff, 2001. Pelagic cnidarians and ctenophores in low dissolved oxygen environments: a review. In Rabalais, N. N. & R. E. Turner (eds), Effects of Hypoxia on Living Resources and Ecosystems. American Geophysical Union, Coastal and Estuar. Stud. 58: 77–100.

  • Raskoff, K. A., 2001. The impact of El Niño events on blooms of mesopelagic hydromedusae. Hydrobiologia 451 (Dev. Hydrobiol. 155): 121–129.

    Google Scholar 

  • Rice, A. L., 1964. Observations on the effects of changes of hydrostatic pressure on the behaviour of some marine animals. J. mar. biol. Assoc. U. K. 44: 163–175.

    Google Scholar 

  • Russell, F. S., 1927. The vertical distribution of marine macroplankton. V. The distribution of animals caught in the ring-trawl in the daytime in the Plymouth area. J. mar. biol. Assoc. U. K. 14: 557–608.

    Google Scholar 

  • Sabatès, A., J. M. Gili & F. Pagès, 1989. Relationship between zooplankton distribution, geographic characteristics and hydrographic patterns off the Catalan coast (western Mediterranean). Mar. Biol. 103: 153–159.

    Google Scholar 

  • Schuyler, Q., & B. K. Sullivan, 1997. Light responses and diel migration of the scyphomedusa Chrysaora quinquecirrha in mesocosms. J. Plankton Res. 19: 1417–1428.

    Google Scholar 

  • Shanks, A. L. & W. M. Graham, 1987. Orientated swimming in the jellyfish Stomolophus meleagris L. Agassiz (Scyphozoan: Rhizostomida). J. exp. mar. Biol. Ecol. 108: 159–169.

    Google Scholar 

  • Shanks, A. L. & W. M. Graham, 1988. Chemical defense in a scyphomedusa. Mar. Ecol. Prog. Ser. 45: 81–86.

    Google Scholar 

  • Shannon, L. V. & P. Chapman, 1983. Incidence of Physalia on beaches in the South Western Cape Province during January 1983. S. Afr. J. Sci. 79: 454–458.

    Google Scholar 

  • Shenker, J. M., 1984. Scyphomedusae in surface waters near the Oregon coast, May-August, 1981. Estuar. coast. Shelf Sci. 19: 619–632.

    Google Scholar 

  • Sullivan, B. K., D. Van Keuren & M. Clancy, 2001. Timing and size of blooms of the ctenophore Mnemiopsis leidyi in relation to temperature in Narragansett Bay, RI. Hydrobiologia 451 (Dev. Hydrobiol. 155): 113–120.

    Google Scholar 

  • Toyokawa, M., T. Inagaki & M. Terazaki, 1997. Distribution of Aurelia aurita (Linnaeus, 1758) in Tokyo Bay; observations with echosounder and plankton net. Proc. 6th Int. Conf. Coel. Biol. 1995: 483–490.

  • Ueno, S. & A. Mitsutani, 1994. Small-scale swarm of a hydrozoan medusa Liriope tetraphylla in Hiroshima Bay, the Inland Sea of Japan. Bull. Plankton Soc. Japan 41: 93–104.

    Google Scholar 

  • Wang, Z., E. Thiébaut & J. C. Dauvin, 1995. Spring abundance and distribution of the ctenophore Pleurobrachia pileus in the Seine estuary: advective transport and diel vertical migration. Mar. Biol. 124: 313–324.

    Google Scholar 

  • Wiebe, P. H., L. P. Madin, L. R. Haury, G. R. Harbison & L. M. Philbin, 1979. Diel vertical migration by Salpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea. Mar. Biol. 53: 249–255.

    Google Scholar 

  • Wolanski, E. & W. M. Hamner, 1988. Topographically controlled fronts in the ocean and their biological influence. Science 241: 177–181.

    Google Scholar 

  • Woodcock, A. H., 1944. A theory of surface water motion deduced from the wind-induced motion of the Physalia. J. mar. Res. 5: 196–205.

    Google Scholar 

  • Wright, D. A. & J. E. Purcell, 1997. Effect of salinity on ionic shifts in mesohaline scyphomedusae, Chrysaora quinquecirrha. Biol. Bull. 192: 332–339.

    Google Scholar 

  • Yamamoto, T. & S. Nishizawa, 1986. Small-scale zooplankton aggregations at the front of a Kuroshio warm-core ring. Deep-Sea Res. 33: 1729–1740.

    Google Scholar 

  • Yasuda, T., 1973. Ecological studies on the jellyfish, Aurelia aurita (Linne), in Urazoko Bay, Fukui Prefecture-VIII. Diel vertical migration of the medusa in early fall, 1969. Publ. Seto Mar. Biol. Lab. 20: 491–500.

    Google Scholar 

  • Young, J. W., R. W. Bradford, T. D. Lamb & V. D. Lyne, 1996. Biomass of zooplankton and micronekton in the southern bluefin tuna fishing grounds off Tasmania, Australia. Mar. Ecol. Prog. Ser. 138: 1–14.

    Google Scholar 

  • Zavodnik, D., 1987. Spatial aggregations of the swarming jellyfish Pelagia noctiluca (Scyphozoa). Mar. Biol. 94: 265–269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, W.M., Pagès, F. & Hamner, W.M. A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451, 199–212 (2001). https://doi.org/10.1023/A:1011876004427

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011876004427

Navigation