Skip to main content
Log in

Mechanochemistry of Solids: Past, Present, and Prospects

  • Published:
Journal of Materials Synthesis and Processing

Abstract

A historical retrospective is presented beginning from the early observations by alchemists to the establishment of mechanochemistry as a branch of science. The changes in structure and chemical properties of solids under three-axes loading and by combined action of pressure and shift are demonstrated. The peculiarities of the phenomena taking place upon stressing of particle assemblies in various types of energy-intensive grinding mills are discussed. Based on the contemporary concepts, the mechanism of stress field formation and relaxation is analyzed. Among decisive factors influencing the mechanochemical synthesis, the formation and renewal of contact area between reacting compounds, the explosive evolution of heat, and the feedback phenomenon are emphasized. The perspective directions of practical application in the area known as mechanical alloying, as well as in preparation of functional ceramics and catalysts, and in pharmacy are discussed. The main directions for improving research, construction of milling devices, training of specialists, and exchange of knowledge are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Ostwald, Lehrbuch der Allgemeinen Chemie, Bd.2 Stöchiometrie (Engelmann, Leipzig, 1891), 1163 S.

    Google Scholar 

  2. M. Carey Lea, Phil. Mag. 34, 46 (1892).

    Google Scholar 

  3. M. Carey Lea, Amer. J. Sci. 46, 413 (1893).

    Google Scholar 

  4. L. Takacs, J. Minerals Met. Mater. Soc. 52, 12 (2000).

    Google Scholar 

  5. F. M. Flavitsky, Russ. Zh. Phyz. Khim. 34, 8 (1902).

    Google Scholar 

  6. L. H. Parker, J. Chem. Soc. 105, 1504 (1914); J. Chem. Soc. 113, 396 (1918).

    Google Scholar 

  7. G. Tammann, Textbook of Metallurgy, vol. 4, Auflage. (Voss, Leipzig, 1932).

    Google Scholar 

  8. G. Tammann, and R. Kohlhaus, Z. Anorg. Allgem. Chem. 199, 209 (1931).

    Google Scholar 

  9. J. Cohen and W. Schmidt, Piezochemie, Kondensierten Systems (Akademie-Verlig, Leipzig, 1919).

    Google Scholar 

  10. P. W. Bridgeman, Rev. Modern Phys. 18, 1 (1946).

    Google Scholar 

  11. H. Muraur, Arfller. Fr. 12, 559 (1933).

    Google Scholar 

  12. F. P. Bowden, and D. Tabor, The Friction and Lubrication of Solids (Clarendon Press, Oxford, 1958), 372 p.

    Google Scholar 

  13. F. Bowden and A. Yoffe, Initiation and Growth of Explosion in Liquids and Solids (Cambridge Univ. Press, Cambridge, 1952), 104 p.

    Google Scholar 

  14. F. P. Bowden and A. Yoffe, Fast Reactions in Solids (Butterworths, London, 1958), 163 p.

    Google Scholar 

  15. N. A. Holevo, Proc. Kirov Inst. Chem. Technol. Kazan. 10, 91 (1946).

    Google Scholar 

  16. P. Wanetig, Textilforschung 4, 154 (1922), Texilforschung. 3, 66 (1925).

    Google Scholar 

  17. P. Wanetig, Kolloid Z. 41, 152 (1927).

    Google Scholar 

  18. H. Staudinger and E. Dreher, Ber. Deut. Chem. Ges. A 69, 1901 (1936).

    Google Scholar 

  19. K. Hess, E. Steurer, and E. Fromm, Kolloid Z. 98, 209 (1942).

    Google Scholar 

  20. A. A. Berlin, Uspekhi Khim. 27, 94 (1958).

    Google Scholar 

  21. P. Yu. Butyagin, Visokomolekulyarniye Soedineniya 9A, 136 (1967).

    Google Scholar 

  22. N. K. Baramboim, Mechanochemistry of Macromolecular Substances (Moscow, Khimiya, 1970), p. 357.

    Google Scholar 

  23. K. Simionesku, and K. Oprea, Mechanochemistry of Macromolecular Compounds, (Mir, Moskva, 1971), p. 357.

    Google Scholar 

  24. J. Clark, and R. J. Rovan, J. Amer. Chem. Soc. 63, 1302 (1941).

    Google Scholar 

  25. K. Peters and W. Cremer, Z. Angew. Chem. 47, 576 (1934).

    Google Scholar 

  26. K. Peters, in Proceedings of the 1st European Symposium on Comminution, H. Rumpf, ed. (Dechema Monographien, Frankfurt, 1962), p. 31.

    Google Scholar 

  27. A. H. Cottrell, The Mechanical Properties of Matter (Wiley, New York, 1964), pp. 78–98.

    Google Scholar 

  28. V. A. Karasev, N. A. Krotova, and B. V. Deryagin, Dokl. Akad. Nauk SSSR 88, 777 (1953).

    Google Scholar 

  29. P. A. Rebinder, in Proceedings of the Jubilee Session of the Academy of Sciences of USSR (Izdat. Akademii Nauk SSSR, Moskva, 1947), p. 55.

    Google Scholar 

  30. G. S. Khodakov and P. A. Rebinder, Dokl. Akad. Nauk SSSR 83, 1316 (1966).

    Google Scholar 

  31. P. A. Thiessen, K. Meyer, and G. Heinicke, Grundlagen der Tribochemie (Akademie-Verlag, Berlin, 1967).

    Google Scholar 

  32. R. Schaider and G. Tetzner, Z. Anorg. Allg. Chem. 309, 55 (1961).

    Google Scholar 

  33. T. Kubo, J. Chem. Soc. Jpn. Ind. Sec. 71, 1301 (1968).

    Google Scholar 

  34. T. J. Lin, S. Nadiv, and J. Grodzian. Mater. Sci. Eng. 7, 313 (1975).

    Google Scholar 

  35. V. V. Boldyrev and E. G. Avvakumov, Russ. Chem. Rev. 40, 847 (1971).

    Google Scholar 

  36. P. J. Butyagin, Russ. Chem. Rev. 40, 1935 (1971).

    Google Scholar 

  37. I. Hint, On Basic Problems of Mechanical Activation (Stroiizdat, Tallin, 1977).

    Google Scholar 

  38. V. V. Boldyrev and Klaus Meyer, Festkörperchemie, Beiträge aus Forschug und Praxis. (VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1973).

    Google Scholar 

  39. G. Heinicke, Tribochemistry (Akademie-Verlag, Berlin, 1984), p. 495.

    Google Scholar 

  40. E. G. Avvakumov, Mechanicheskie Metody Activazii Chimicheskikh Prozessov (Izd. Nauka, Novosibirsk, 1986), p. 305.

    Google Scholar 

  41. K. Tkáčová, Mechanical Activation of Minerals (Elsevier, Amsterdam, 1989), p. 156.

    Google Scholar 

  42. C. Suryanarayana, ed., Non-Equilibrium Processing of Materials (Pergamon, Oxford, 1999).

    Google Scholar 

  43. K. F. Herzfeld, Phys. Rev. 29, 701 (1927).

    Google Scholar 

  44. N. F. Mott, Proc. Roy. Phys. Soc. A 62, 416 (1949).

    Google Scholar 

  45. A. Cottrell, Introduction to the Modern Theory of Metals (Institute of Metals, London, 1988), p. 260.

    Google Scholar 

  46. H. G. Drickhamer and C. W. Frank, Electronic Transition and High Pressure Chemistry and Physics of Solids (Chapman & Hall, London, 1973), p. 220.

    Google Scholar 

  47. C. D. Schmulbach, F. Dachille, and M. Bunoh, Inorg. Chem. 3, 808 (1964).

    Google Scholar 

  48. H. E. Le-May, in Comprehensive Coordination Chemistry, vol. 2, Wilkinson, ed. (Pergamon Press, Oxford, 1987), pp. 463–473.

    Google Scholar 

  49. E. V. Boldyreva, Mol. Crystallogr. Liq. Crystals Nonlinear Optics, 242, 17 (1994).

    Google Scholar 

  50. M. Rutkonen, R. Fold, C. Veller, and M. Lehmann, Acta Crystallogr. B41, 77 (1985).

    Google Scholar 

  51. E. Boldyreva, T. Shakhtscheneider, M. Vasilchenko, H. Ahsbahs, and H. Uchtmann, Acta Crystallogr. B56, 299 (2000).

    Google Scholar 

  52. E. V. Boldyreva, H. Ahsbahs, and H. Uchtmann, Ber. Bunseng. Phys. Chem. 98, 738 (1994).

    Google Scholar 

  53. E. Boldyreva, S. Kuzmina, and H. Ahsbahs, Russ. J. Struct. Chem. 39, 934 (1998).

    Google Scholar 

  54. E. Boldyreva and A. Sidel'nikov, Izv. Sib. Otd. Akad. Nauk. Ser. Khim., pp. 139–145 (1987).

  55. H. Drickhamer and L. L. Brag, Intern. Rev. Phys. Chem. 8, 46 (1986).

    Google Scholar 

  56. E. S. Larsen and P. Bridgman, Amer. J. Sci. 36, 81 (1938).

    Google Scholar 

  57. P. Bridgman and I. Simon, J. Appl. Phys. 24, 405 (1953).

    Google Scholar 

  58. F. Dachille and R. Roy, in Reactivity of Solids, Proceedings of the 4th International Symposium on the Reactivity of Solids, van Bier, ed. (Elsevier, Amsterdam, 1961), pp. 502–510.

    Google Scholar 

  59. F. Dachille, and R. Roy, J. Geol. 72, 243 (1964).

    Google Scholar 

  60. R. Z. Zeto and R. Roy, in Reactivity of Solids, Proceedings of the 6th International Symposium on the Reactivity of Solids, J. W. Mitchell, ed. [Wiley (Interscience), New York, 1969], pp. 803–810.

    Google Scholar 

  61. A. A. Zharov, in High Pressure Chemistry and Physics of Polymers, E. Kowarsky, ed. (CRC) Press, Boca Raton, FL 1994), Chap. 7.

    Google Scholar 

  62. A. A. Zharov, Russ. Chem. Rev. 33, 236 (1984).

    Google Scholar 

  63. A. A. Politov, B. A. Fursenko, and V. V. Boldyrev, Dokl. Akad. Nauk. SSSR 371, 28–31 (2000).

    Google Scholar 

  64. V. V. Neverov and P. P. Zhitnikov, Izv. Vuzov. Phys., pp. 10–15 (1994).

  65. V. V. Neverov, V. H. Burov, and P. P. Zhitnikov, Izv. Sib. Otd. Akad. Nauk. Ser. Khim. 5, 54 (1983).

    Google Scholar 

  66. A. E. Arinsshtein, Dokl. Akad. Nauk SSSR 364, 778 (1999).

    Google Scholar 

  67. J. J. Gilman, Czech. J. Phys. 45, 913 (1995).

    Google Scholar 

  68. J. J. Gilman, Science 274, 65 (1996).

    Google Scholar 

  69. J. J. Gilman, Phil. Mag. 67B, 207 (1993).

    Google Scholar 

  70. K. Tkáčová, H. P. Heegn, and N. Stevulová, Intern. J. Mineral Proc. 40, 17 (1993).

    Google Scholar 

  71. P. Yu. Butyagin, Russ. Chem. Rev. 63, 1031 (1994).

    Google Scholar 

  72. N. Z. Lyakhov, in Proceedings of the Second Japan-Soviet Symposium on Mechanochemistry, G. Jimbo, M. Senna, and Y. Kuwahara, eds. (Soc. Powder Technology Japan, Tokyo, 1988), pp. 59–62.

    Google Scholar 

  73. F. Kh. Urakaev and V. V. Boldyrev, Powder Technol. 107, 197 (2000).

    Google Scholar 

  74. T. H. Courtney, Mater. Trans. 36, 110 (1995).

    Google Scholar 

  75. Yu. T. Pavlukhin, Ya. Ya. Medikov, and V. V. Boldyrev, Izv. Sib. Otd. Akad. Nauk. 2, 3, (1983).

    Google Scholar 

  76. V. V. Boldyrev, Kinet. Cat. 13, 1411 (1972).

    Google Scholar 

  77. I. Lin and S. Nadiv, Mater. Sci. Eng. 39, 193 (1979).

    Google Scholar 

  78. E. Yu. Ivanov, I. G. Konstanchuk, and V. V. Boldyrev, Reactivity Solids 7, 167 (1989).

    Google Scholar 

  79. E. Yu. Ivanov, B. Bokhonov, and I. Konstanchuk, J. Mater. Sci. 6, 1440 (1990).

    Google Scholar 

  80. Yu. T. Pavlukhin, Ya. Ya. Medikov, and V. V. Boldyrev, Izv. Sib. Otd. Akad. Nauk. 5, 46 (1983).

    Google Scholar 

  81. A. E. Yermakov, E. E. Yurchikov, E. P. Ylsukov, V. A. Barinov, and Yu. G. Chukalkin, Fiz. Tverd. Tela. (Kharkov) 24, 1947 (1982).

    Google Scholar 

  82. Yu. T. Pavlukhin and V. V. Boldyrev, Rev. Solid State Sci. 2, 603 (1988).

    Google Scholar 

  83. Yu. T. Pavlukhin, and Ya. Ya. Medikov, J. Solid State Chem. 53, 155 (1984).

    Google Scholar 

  84. V. V. Boldyrev, O. V. Jakovleva, Ya. Ya. Medikov, and Y. T. Pavlukhin. Dokl. Akad. Nauk. SSSR 268, 636 (1983).

    Google Scholar 

  85. K. Tkačova, V. Šepelak, N. Števulova, and V. V. Boldyrev, J. Solid State Chem. 123, 100 (1996).

    Google Scholar 

  86. V. Šepelak, U. Steinike, D. Uecker, R. Tretin, S. Wismann, and K. D. Becker, Solid State Ionics 101, 1343 (1997).

    Google Scholar 

  87. V. V. Boldyrev, E. G. Avvakumov, H. Harenz, G. Heinicke, and L. I. Strugova, Z. Anorg. Allg. Chem. 393, 152 (1972).

    Google Scholar 

  88. V. V. Boldyrev and G. Heinicke, Z. Chem. 19, 353 (1979).

    Google Scholar 

  89. V. V. Boldyrev, Z. Phys. Chem. 256, 342 (1975).

    Google Scholar 

  90. V. V. Boldyrev, F. Kh. Urakaev, V. R. Regel, and O. F. Pozdnjakov, Dokl. Akad. Nauk. SSSR. 21, 634 (1973).

    Google Scholar 

  91. F. Kh. Urakaev, V. V. Boldyrev, O. F. Pozdhjakov, and V. R. Regel, Kinet. Cat. 18, 350 (1977).

    Google Scholar 

  92. P. P. Budnikov and A. M. Ginstling, Principles of Solid State Chemistry (Maclaren, London, 1968), 454p.

    Google Scholar 

  93. M. Poux, P. Fayolle, J. Bertrand, D. Bardroux, and J. Bousquet, Powder Technol. 68, 213 (1991).

    Google Scholar 

  94. P. Yu. Butjagin, in Mekhanokhimicheskii Sintez v Neorganicheskoi Khimii, E. G. Avvakumov, ed. (Nauka, Novosibirsk, 1991), pp. 33–52.

    Google Scholar 

  95. P. Yu. Butyagin, Mater. Sci. Forum 88–90, 711 (1992).

    Google Scholar 

  96. G. F. Hüttig, in Handbuch der Katalyse, Bd. 6, G. Schwab, ed. (Springer Verlag, Wien, 1943), pp. 472–540.

    Google Scholar 

  97. G. F. Hüttig, Z. Elektrochem. Angew. Phys. Chem. 41, 527 (1935).

    Google Scholar 

  98. W. Jander, Angew. Chem. 49, 879 (1936).

    Google Scholar 

  99. T. Watanabe, T. Isobe, and M. Senna, J. Solid State Chem. 122, 74 (1996).

    Google Scholar 

  100. Y. Fujiwara, T. Isobe, M. Senna, and J. Tanaka, Trans. Mater. Res. Soc. Jpn. 25, 139 (2000).

    Google Scholar 

  101. I. J. Lin and S. Nadiv, in Proceedings of the XVI International Mineral Processing Congress, E. Forsberg, ed. (Elsevier, Amsterdam, 1988), pp. 231–242.

    Google Scholar 

  102. P. Baron, I. Lin, S. Nadiv, and M. Melamud, J. Thermal Anal. 42, 207 (1994).

    Google Scholar 

  103. A. E. Yermakov, E. E. Yurchikov, and V. A. Barinov, Fiz. Metal. Metalloved. 52, 1183 (1981).

    Google Scholar 

  104. K. B. Gerasimov and V. V. Boldyrev, Mater. Res. Bull. 31, 1297 (1996).

    Google Scholar 

  105. V. M. Zalkin, Nature of Eutectic Melts and the Effect of Contact Melting (Metallurgia, Moscow, 1987), p. 151.

    Google Scholar 

  106. E. G. Avvakumov, E. T. Devyatkina, and N. V. Kosova, J. Solid State Chem. 113, 379 (1994).

    Google Scholar 

  107. N. V. Kosova, E. T. Devyatkina, and E. G. Avvakumov, Siber. Chem. J. 2, 135 (1992).

    Google Scholar 

  108. M. Senna, T. Watanabe, and T. Isobe, Mater. Sci. Forum 225–227, 521 (1996).

    Google Scholar 

  109. V. V. Boldyrev, A. Kh. Khabibulin, N. V. Kosova, and E. G. Avvakumov, Inorg. Mater. 33, 1144 (1997).

    Google Scholar 

  110. N. V. Kosova, A. Kh. Khabibulin, and V. V. Boldyrev, Solid State Ionics 101–103, 53 (1997).

    Google Scholar 

  111. V. V. Boldyrev, A. Kh. Khabibulin, N. V. Kosova, and E. G. Avvakumov, J. Mater. Synthesis Proc. 4, 377 (1996).

    Google Scholar 

  112. G. Mi, F. Saito, and M. Hanada, Powder Technol. 93, 77 (1997).

    Google Scholar 

  113. J. Temunjin, K. Okada, and K. Mackenzie, J. Solid State Chem. 138, 169 (1998).

    Google Scholar 

  114. G. Tschakarov and G. Gospodinov, Z. Phys. Chem. 261, 340 (1980).

    Google Scholar 

  115. G. Tschakarov, G. Gospodinov, and V. Z. Bontsche, J. Solid State Chem. 41, 244 (1982).

    Google Scholar 

  116. L. Takacs, J. Solid State Chem. 125, 75 (1996).

    Google Scholar 

  117. L. Takacs, Mater. Sci. Forum 269–272, 513 (1998).

    Google Scholar 

  118. V. V. Boldyrev, V. A. Aleksandrov, V. I. Smirnov, K. B. Gerasimov, and E. Yu. Ivanov, Dokl. Akad. Nauk. SSSK 317, 663 (1991).

    Google Scholar 

  119. T. F. Grigorjeva, A. P. Barinova, G. N. Kryukova, V. D. Belykh, E. Yu. Ivanov, and V. V. Boldyrev, Mater. Sci. Forum. 269–272, 235 (1998).

    Google Scholar 

  120. G. B. Schaffer and P. G. MacCormick, Metal. Mater. Trans. 23A, 1285 (1996).

    Google Scholar 

  121. Ch. Gras, E. Gaffet, F. Bernard, A. Vrel, and J. C. Niepce, in Book of Abstracts of the Vth International Symposium on Self-Propagating High-Temperature Synthesis (SHS-99) (Moscow, 1999), p. 39.

  122. O. I. Lomovsky, Computer Data Bank “Mechanochemistry” (Novosibirsk, 1993). Published by the Institute of Solid State Chemistry.

  123. O. I. Lomovsky, in Proceedings of the 2nd International Confernce on Mechanochemistry and Mechanical Alloying, N. Z. Lyakhov, ed. (Novosibirsk, 1997), p. 140. Published by the Institute of Solid State Chemistry.

  124. V. V. Boldyrev, Mater. Sci. Forum, 269–272, 227 (1998).

    Google Scholar 

  125. R. Roy, in Reactivity of Solids, Proceedings of the IX International Conference. Navorotsky, ed. [Wiley (Interscience), New York, 1988, pp. 1998–1921.

    Google Scholar 

  126. V. V. Boldyrev, A. S. Kolosov, M. V. Chaikina, and E. G. Avvakumov, Dokl. Akad. Nauk. SSSR 233, 892 (1977).

    Google Scholar 

  127. R. Pothig, L. Dunkel, and R. Paudert, Kristallogr. Technik. 13, 879 (1978).

    Google Scholar 

  128. M. Chaikina, G. Kryukov, and M. Tatarinzeva, Proc. Siber. Br. Acad. Sci. 5, 134 (1989).

    Google Scholar 

  129. V. Boldyrev, M. Chaikina, G. Kryukova, G. Litvak, and V. Zaikovskii, Dokl. Akad. Nauk SSSR 286, 1426 (1986).

    Google Scholar 

  130. R. Poudert, H. Harenz, and G. Heinicke, DDR-Patent WP 119569 (1976).

  131. H. P. Heegn, K. Tkačová, G. Ludwig, C. Bernhardt, and K. Husemann, Chem. Technol. 30, 348 (1978).

    Google Scholar 

  132. I. Berkhin, I. Naumenko, and L. Pasashnikova, Siber. J. Agric., pp. 7–14 (1979).

  133. K. Tkáčová, Mechanical Activation in Mineral Processing and Treatment (Veda Vydavatel'stvo SAV, Bratislav, 1984).

    Google Scholar 

  134. K. Tkáčová and P. Baláz, Hydrometallurgy 21, 103 (1988).

    Google Scholar 

  135. R. Paudert, H. Harenz, G. Heinicke, L. Dunkel, L. Bottig, A. Kolosov, V. Boldyrev, and M. Chaikina, DDR-Patent. CO5B/205660, (1985).

  136. K. Tkáčová, and N. Števulová, Thermochim. Acta 93, 713 (1985).

    Google Scholar 

  137. K. Tkáčová, P. Baláž, and T. A. Korneva, J. Therm. Anal. 34, 1031 (1988).

    Google Scholar 

  138. V. P. Chuev. L. A. Lyagina, E. Yu. Ivanov, and V. V. Boldyrev, Dokl. Akad. Nauk SSSR 307, 1429 (1989).

    Google Scholar 

  139. V. P. Chuev, L. A. Lyagina, S. N. Kovalenko, and E. Yu. Ivanov, Siberian J. Chem. 5, 158 (1991).

    Google Scholar 

  140. E. Ivanov, T. Grigorjeva, G. Golubkova, V. V. Boldyrev, and A. Fasman, Mater. Lett. 7, 51 (1988).

    Google Scholar 

  141. E. Ivanov, G. Grigoreva, and G. Golubkova, Reactions Solids 8, 77 (1990).

    Google Scholar 

  142. A. Fasman, S. Mikhailenko, O. Kalinina, E. Ivanov, and G. Golubkova, in Scientific Basis for the Preparation of Catalysis, 5th International Symposium B. Delmon, ed. (Louvain la Neuve, 1990), pp. 10–21.

  143. K. Tkáčová, P. Baláž, and Z. Bastl, Thermochim. Acta 170, 277 (1990).

    Google Scholar 

  144. K. Tkáčová, P. Baláž, B. Mišura, and V. A. Chanturiya, Hydrometallurgy 33, 291 (1993).

    Google Scholar 

  145. J. Bade and H. Hoffmann, Chem. Eng. Commun. 143, 169 (1996).

    Google Scholar 

  146. M. Umemoto, Mater. Trans. Jpn. Inst. Met. 36, 373 (1995).

    Google Scholar 

  147. V. Boldyrev, N. Lyakhov, and M. Chaikina, Chem. Sustainable Develop. 4, 97 (1996).

    Google Scholar 

  148. E. Yu. Belyaev, O. I. Lomovsky, A. I. Ancharov, and B. P. Tolochko, Nucl. Instr. Methods Phys. Res. A405, 435 (1998).

    Google Scholar 

  149. E. Belyaev, S. Mamyloz, and O. Lomovsky, J. Mater. Sci. 35, 2029 (2000).

    Google Scholar 

  150. E. Belyaev, G. Suchkova, A. Ancharov, S. Avramchuk, N. Slavnikh, S. Mamylov, and O. Lomovsky, in Proceedings of the 4th Korea-Russia International Symposium on Science and Technology (Ulsan, Korea, 2000), pp. 357–360.

    Google Scholar 

  151. A. V. Dushkin, Z. Yu. Rykova, V. V. Boldyrev, E. A. Vinogradov, F. V. Guss, and V. P. Chetverikov, Patent RF N 2099058 (20.12.97).

  152. A. Ellis, M. Geselbracht, M. Greenblat, B. Johnson, G. Lisensky, and R. S. Whittinham, J. Chem. Educ. 69, 1075 (1992).

    Google Scholar 

  153. A. B. Ellis, M. Geselbracht, M. Greenblat, B. Johnson, G. Lisensky, and R. S. Whittinham, Material Science Companion (Publ. Amer. Chem. Soc., Washington, D.C., 1993).

    Google Scholar 

  154. K. Tkáčová et al., Powder Technol. 83, 163 (1995).

    Google Scholar 

  155. K. Tkáčová et al., J. Mater. Res. 10, 2728 (1995).

    Google Scholar 

  156. V. V. Zyryanov and O. B. Isakova, Izv. Sib. Otd. Akad. Nauk. 3, 50 (1988).

    Google Scholar 

  157. N. Števulová, K. Tkáčová, and J. Lipka, Keram. Z. 44, 609 (1992).

    Google Scholar 

  158. G. Cocco, G. Mulas, and L. Shiffini, Mater. Trans. Jpn. Inst. Met. 36, 150 (1995).

    Google Scholar 

  159. K. Tkáčová and N. Števulová, Keram. Z. 45, 400 (1993).

    Google Scholar 

  160. J. Bade and H. Hoffmann, Chem. Eng. Commun. 143, 169 (1996).

    Google Scholar 

  161. E. M. Gutman, Mechanochemistry of Solid Surfaces (World Scientific, Singapore, 1994), 332 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boldyrev, V.V., Tkáčová, K. Mechanochemistry of Solids: Past, Present, and Prospects. Journal of Materials Synthesis and Processing 8, 121–132 (2000). https://doi.org/10.1023/A:1011347706721

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011347706721

Navigation