Skip to main content
Log in

Developments on gelling algal galactans, their structure and physico-chemistry

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The wide uses of the algal galactans agar, agarose and carrageenans arebased on their unique properties to form strong gels in aqueous solutions. These gels result from peculiar regular chemical structures, specific orderedmolecular conformations and aggregations. In recent years, newmethodologies and instruments have provided a more accurate view of therelationships between the chemical structure and the gelling characteristicsof these complex hybrid and heterogeneous polysaccharides. Methanolysisand reductive acid hydrolysis procedures coupled to differentchromatographic separations allowing the quantitative determination of allthe constituent sugars including the acid labile 3,6-anhydyrogalactose areparticularly emphasised. Means of determining sugar linkages, substitutionsand sequences using chemical, enzymatic and spectroscopic methods arealso presented. Developments in multi- and low-angle laser-light diffusiondetectors coupled to high performance size exclusion chromatography nowrender the determination of molecular weight and molecular weightdistribution of these galactans more accessible. Such techniques also yieldnew information on the aggregate formation of these sulphatedpolysaccharides. These and other data question the existence of thegenerally assumed intertwined double helical conformations of thesegalactans during gel formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araki C (1966) Some recent studies on the polysaccharides of agarophytes. Proc. Int. Seaweed Symp. 5: 3–17.

    Google Scholar 

  • Armisen R, Galatas F (1987) Production and uses of agar. In McHugh DJ (ed.), Production and Utilization of Products from Commercial Seaweeds. FAO Fish. Tech. Pap. 288: 1–57.

  • Arndt ER, Steven ES (1994) A conformational study of agarose by vacuum UV CD. Biopolymers 34: 1527–1534.

    Google Scholar 

  • Arnott S, Fulmer A, Scott WE, Dea ICM, Moorhouse R, Rees DA (1974a) The agarose double helix and its function in agarose gel structure. J. Mol. Biol. 90: 269–284.

    Google Scholar 

  • Arnott S, Scott WE, Rees DA, McNab CGA (1974b) ι-Carrageenan: Molecular structure and packing of polysaccharide double helices in oriented fibers of divalent cation salts. J. Mol. Biol. 90: 253–267.

    Google Scholar 

  • Bellion C, Hamer GK, Yaphe W (1981) Analysis of kappa-iota hybrid carrageenans with kappa-carrageenase, iota-carrageenase and 13C NMR. Proc. Int. Seaweed Symp. 10: 379–384.

    Google Scholar 

  • Bongaerts K, Reynaers H, Zanetti F, Paoletti S (1999a) Equilibrium and nonequilibrium association processes of κ-carrageenan in aqueous salt solutions. Macromolecules 32: 683–689.

    Google Scholar 

  • Bongaerts K, Reynaers H, Zanetti F, Paoletti S (1999b) On the molar mass of κ-carrageenan in the course of conformational transition from the disordered to the fundamental ordered form. Macromolecules 32: 675–682.

    Google Scholar 

  • Borgström J, Egermayer M, Sparrman T, Quist PO, Piculell L (1998) Liquid crystallinity versus gelation of κ-carrageenan in mixed salts: effects of molecular weight, salt composition, and ionic strength. Langmuir 14: 4935–4944.

    Google Scholar 

  • Brüll L, Huisman M, Schols H, Voragen F, Critchley G, Thomas-Oates J, Haverkamp J (1998) Rapid molecular mass and structural determination of plant cell wall-derived oligosaccharidesusing off-line high performance anion-exchange chromatography/mass spectrometry. J. Mass Spectrom. 33: 713–720.

    Google Scholar 

  • Caceres PJ, Faudez CA, Matsuhiro B, Vasquez JA (1997) Carrageenophyte identification by second-derivative Fourier transform infrared spectroscopy. J. appl. Phycol. 8: 523–527.

    Google Scholar 

  • Cases MR, Cerezo AS, Stortz CA (1995) Separation and quantitation of enantiomeric galactoses and their mono-Omethylethers as their diastereomeric acetylated 1–deoxy-1–(2–hydroxypropylamino) alditols. Carbohydr. Res. 269: 333–341.

    Google Scholar 

  • Chandrasekaran R (1998) X-ray diffraction of food polysaccharides. Adv. Food Nutr. Res. 42: 131–210.

    Google Scholar 

  • Chiovitti A, Bacic A, Craik DJ, Munro SLA, Kraft GT, Liao ML (1997) Cell-wall polysaccharides from Australian red algae of the family Solieriaceae (Gigartinales, Rhodophyta): Novel, highly pyruvated carrageenans from the genus Callophycus. Carbohydr. Res. 299: 229–243.

    Google Scholar 

  • Chiovitti A, Liao ML, Kraft GT, Munro SLA, Craik DJ, Bacic A (1996) Cell wall polysaccharides from Australian red algae of the family Solieriaceae (Gigartinales, Rhodophyta): Highly methylated carrageenans from the genus Rhabdonia. Bot. mar. 39: 47–59.

    Google Scholar 

  • Chopin T, Whalen E (1993) A new rapid method for carrageenan identification by FT IR diffuse reflectance spectroscopy directly on dried, ground algal material. Carbohydr. Res. 246: 51–59.

    Google Scholar 

  • Ciancia M, Matulewicz MC, Cerezo AS (1993) L-galactose containing galactans from the carrageenophyte Gigartina skottsbergii. Phytochemistry 34: 1541–1543.

    Google Scholar 

  • Ciancia M, Matulewicz MC, Cerezo AS (1997) A L-galactosecontaining carrageenan from cystocarpic Gigartina skottsbergii. Phytochemistry 45: 1009–1013.

    Google Scholar 

  • Cosson J, Deslandes E, Zinoun M, Mouradi-Givernaud A (1995) Carrageenans and agars, red algal polysaccharides. Progr. Phycol. Res. 11: 269–324.

    Google Scholar 

  • Craigie J.S. (1990) Cell walls. In Cole KM, Sheath RG (eds), Biology of the Red Algae. Cambridge University Press, Cambridge, pp. 221–257.

    Google Scholar 

  • Craigie JS, Leigh C (1978) Carrageenans and agars. In Hellebust JA, Craigie JS (eds), Handbook of Phycological Methods, Physiological and Biochemical Methods. Cambridge University Press, Cambridge, pp. 109–131.

    Google Scholar 

  • Craigie JS, Wen ZC (1984) Effects of temperature and tissue age on gel strength and composition of agar from Gracilaria tikvahiae (Rhodophyceae). Can. J. Bot. 62: 1665–1670.

    Google Scholar 

  • Duckworth M, Yaphe W (1971) The structure of agar. Part I: Fractionation of a complex mixture of polysaccharides. Carbohydr. Res. 16: 189–197.

    Google Scholar 

  • Errea M, Ciancia M, Matulewicz M, Cerezo A (1998) Separation and quantitation of enantiomeric 3,6–anhydrogalactoses by conversion to the corresponding diastereomeric acetylated sec-butyl 3,6–anhydrogalactonates. Carbohydr. Res. 311: 235–238.

    Google Scholar 

  • Falshaw R, Furneaux R, Stevenson DE (1998) Agars from nine species of red seaweed in the genus Curdiea (Gracilariaceae, Rhodophyta). Carbohydr. Res. 308: 107–115.

    Google Scholar 

  • Falshaw R, Furneaux RH (1994) Carrageenan from the tetrasporic stage of Gigartina decipiens (Gigartinaceae, Rhodophyta). Carbohydr. Res. 252: 171–182.

    Google Scholar 

  • Falshaw R, Furneaux RH (1995) The structural analysis of disaccharides from red algal galactans by methylation and reductive partial-hydrolysis. Carbohydr. Res. 269: 183–189.

    Google Scholar 

  • Falshaw R, Furneaux RH (1998) Structural analysis of carrageenans from tetrasporic stages of the red algae, Gigartina lanceata and Gigartina chapmanii (Gigartinaceae, Rhodophyta). Carbohydr. Res. 307: 325–331.

    Google Scholar 

  • Falshaw R, Furneaux RH, Wong H, Liao ML, Bacic A, Chandrkrachang S (1996) Structural analysis of carrageenans from Burmese and Thai samples of Catenella nipae Zanardini. Carbohydr. Res. 285: 81–98.

    Google Scholar 

  • Foord SA, Atkins EDT (1989) New x-ray diffraction results from agarose: extended single helix structures and implications for gelation mechanism. Biopolymers 28: 1345–1365.

    Google Scholar 

  • Fournet I, ArGall E, Deslandes E, Huvenne JP, Sombret B, Floc'h JY (1997) In situ measurements of cell wall components in the red alga Solieria chordalis (Solieriaceae, Rhodophyta) by FTIR microspectrometry. Bot. mar. 40: 45–48.

    Google Scholar 

  • Greer CW, Rochas C, Yaphe W (1985) Iota-carrageenan oligosaccharides as model compounds for structural analysis of iotacarrageenan by 13C-NMR spectroscopy. Bot. mar. 28: 9–14.

    Google Scholar 

  • Greer CW, Shomer I, Goldstein ME, Yaphe W (1984) Analysis of carrageenan from Hypnea musciformis by using κ-and ι-carrageenanses and 13C-N.M.R. spectroscopy. Carbohydr. Res. 129: 189–196.

    Google Scholar 

  • Greer CW, Yaphe W (1984a) Characterization of hybrid (betakappa-gamma) carrageenan from Eucheuma gelatinae J. Agardh (Rhodophyta, Solieraceae) using carrageenases, infrared and 13C-nuclear magnetic resonance spectroscopy. Bot. mar. 27: 473–478.

    Google Scholar 

  • Greer CW, Yaphe W (1984b) Enzymatic analysis of carrageenans: structure of carrageenan from Eucheuma nudum. Hydrobiologia 116/117: 563–567.

    Google Scholar 

  • Greer CW, Yaphe W (1984c) Hybrid (iota-nu-kappa) carrageenan from Eucheuma nudum (Rhodophyta, Solieriaceae), identified using iota-and kappa-carrageenases and 13C-nuclear magnetic resonance spectroscopy. Bot. mar. 27: 479–484.

    Google Scholar 

  • Guenet JM, Rochas C, Brûlet A (1993) Molecular structures in biopolymers sols and gels. J. Physique 3: 99–102.

    Google Scholar 

  • Guiseley KB (1970) The relationship between methoxyl content and gelling temperature of agarose. Carbohydr. Res. 13: 247–256.

    Google Scholar 

  • Harding SE, Day K, Dhami R, Lowe PM (1997) Further observations on the size, shape and hydration of kappa-carrageenan in dilute solution. Carbohydr. Polym. 32: 81–97.

    Google Scholar 

  • Harris MJ, Turvey JR (1970) Sulphates of monosaccharides and derivatives. Part VIII. Infrared spectra and optical rotations of some glycoside sulphates. Carbohydr. Res. 15: 51–56.

    Google Scholar 

  • Hemmingson JA, Furneaux RH (1997) Biosynthetic activity and galactan composition in different regions of the thallus of Gracilaria chilensis Bird, McLachlan et Oliveira. Bot. mar. 40: 351–357.

    Google Scholar 

  • Hemmingson JA, Furneaux RH, Murray-Brown VH (1996a) Biosynthesis of agar polysaccharides in Gracilaria chilensis Bird, McLachlan et Oliveira. Carbohydr. Res. 287: 101–115.

    Google Scholar 

  • Hemmingson JA, Furneaux RH, Wong H (1996b) In vivo conversion of 6–O-sulfo-L-galactopyranosyl residues into 3,6–anhydro-L-galactopyranosyl residues in Gracilaria chilensis Bird, McLachlan et Oliveira. Carbohydr. Res. 296: 285–292.

    Google Scholar 

  • Hickson TGL, Polson A (1968) Some physical characteristics of the agarose molecule. Biochim. Biophys. Acta 195: 43–56.

    Google Scholar 

  • Hjerde T, Smidsrød O, Christensen BE (1999) Analysis of the conformational properties of κ-and ι-carrageenan by size-exclusion chromatography combined with low-angle laser light scattering. Biopolymers 49: 71–80.

    Google Scholar 

  • Hjerde T, Smidsrød O, Stokke BT, Christensen BE (1998) Acid hydrolysis of κ-and ι-carrageenan in the disordered and ordered conformations: characterization of partially hydrolyzed samples and single-stranded oligomers released from the ordered structures. Macromolecules 31: 1842–1851.

    Google Scholar 

  • Hoffmann RA, Gidley MJ, Cooke D, Frith WJ (1995) Effect of isolation procedures on the molecular composition and physical properties of Eucheuma cottonii carrageenan. Food Hydrocol. 9: 281–289.

    Google Scholar 

  • Jimenez-Barbero J, Bouffar-Roupe C, Rochas C, Perez S (1989) Modelling studies of solvent effects on the conformational stability of agarobiose and neoagarobiose and their relationship to agarose. Int. J. Biol. Macromol. 11: 265–272.

    Google Scholar 

  • Knutsen SH, Grasdalen H (1992) The use of neocarrabiose oligosaccharides with different length and sulphate substitution as model compounds for 1H-NMR spectroscopy. Carbohydr. Res. 229: 233–244.

    Google Scholar 

  • Knutsen SH, Murano E, D'Amato M, Toffanin R, Rizzo R, Paoletti S (1995) Modified procedures for extraction and analysis of carrageenan applied to the red alga Hypnea musciformis. J. appl. Phycol. 7: 565–576.

    Google Scholar 

  • Knutsen SH, Myslabodski DE, Larsen B, Usov AI (1994) A modified system of nomenclature for red algal galactans. Bot. mar. 37: 163–169.

    Google Scholar 

  • Körner R, Limberg G, Mikkelsen JD, Roepstorff P (1998) Characterization of enzymatic pectin digests by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 33: 836–842.

    Google Scholar 

  • Lahaye M, Revol JF, Rochas C, McLachlan J, Yaphe W (1988) The chemical structure of Gracilaria crassissima (P. et H. Crouan in Schramm et Mazé) P. et H. Crouan in Schramm et Mazé and G. tikvahiae McLachlan (Gigartinales, Rhodophyta) cell-wall polysaccharides. Bot. mar. 31: 491–501.

    Google Scholar 

  • Lahaye M, Rochas C (1991) Chemical structure and physicochemical properties of agar. Hydrobiologia 221: 137–148.

    Google Scholar 

  • Lahaye M, Rochas C, Yaphe W (1986) A new procedure for determining the heterogeneity of agar polymers in the cell walls of Gracilaria spp. (Gracilariaceae, Rhodophyta). Can. J. Bot. 64: 579–585.

    Google Scholar 

  • Lahaye M, Yaphe W, Rochas C (1985) 13C-N.m.r. spectral analysis of sulfated and desulfated polysaccharides of the agar type. Carbohydr. Res. 143: 240–245.

    Google Scholar 

  • Lahaye M, Yaphe W, Viet MTP, Rochas C (1989) 13C-N.M.R. spectroscopic investigation of methylated and charged agarose oligosaccharides and polysaccharides. Carbohydr. Res. 190: 249–265.

    Google Scholar 

  • Lecacheux D, Panaras R, Brigand G, Martin G (1985) Molecular weight distribution of carrageenans by size exclusion chromatography and low angle laser light scattering. Carbohydr. Polym. 5: 423–440.

    Google Scholar 

  • Matsuhiro B, Rivas P (1993) Second-derivative Fourier transform infrared spectra of seaweed galactans. J. appl. Phycol. 5: 45–51.

    Google Scholar 

  • Matsuo M, Takano R, Kamei-Hayashi K, Hara S (1993) A novel regioselective desulfation of polysaccharide sulfates: specific 6–O-desulfation with N,O-bis(trimethysilyl)acetamide. Carbohydr. Res. 241: 209–215.

    Google Scholar 

  • Millane RP, Nzewi EU, Arnott S (1989) Molecular structures of carrageenans as determined by X-ray fiber diffraction. In Millane RP, BeMiller JN, Chandrasekaran R (eds), Frontiers in Carbohydrate Research-1: Food Applications. Elsevier Applied Science, London: 105–131.

    Google Scholar 

  • Millane RP, Chandrasekaran R, Arnott S, Dea ICM (1988) The molecular structure of kappa-carrageenan and comparison with iota-carrageenan. Carbohydr. Res. 182: 1–17.

    Google Scholar 

  • Miller I (1997) The chemotaxonomic significance of the water-soluble red algal polysaccharides. Recent Res. Dev. Phytochem. 1: 531–565.

    Google Scholar 

  • Miller I (1998) The structure of a pyruvylated carrageenan extracted from Stenogramme interrupta as determined by 13C NMR spectroscopy. Bot. mar. 41: 305–315.

    Google Scholar 

  • Miller IJ, Blunt JW (1998) Desulfation of algal galactans. Carbohydr. Res. 309: 39–43.

    Google Scholar 

  • Miller IJ, Falshaw R, Furneaux RH (1994) Chemical methylation of agaroid hydroxyl-groups. Carbohydr. Res. 262: 127–135.

    Google Scholar 

  • Mohamed ZH, Hember MWN, Richardson RK, Morris ER (1998) Kinetic and equilibrium processes in the formation and melting of agarose gels. Carbohydr. Polym. 36: 15–26.

    Google Scholar 

  • Morrice LM, McLean MW, Long WF, Williamson FB (1983) Porphyran primary structure. An investigation using ß-agarase I from Pseudomonas atlantica and 13C-NMR spectroscopy. Eur. J. Biochem. 133: 673–684.

    Google Scholar 

  • Murano E (1995) Chemical structure and quality of agars from Gracilaria. J. appl. Phycol. 7: 245–254.

    Google Scholar 

  • Murano E, Toffanin R, Zanetti F, Knutsen SH, Paoletti S, Rizzo R (1992) Chemical and macromolecular characterisation of agar polymers from Gracilaria dura (C. Agardh) J. Agardh (Gracilariaceae, Rhodophyta). Carbohydr. Polym. 18: 171–178.

    Google Scholar 

  • Nagasawa K, Inoue Y, Kamata T (1977) Solvolytic desulfation of glycosaminoglucuronan sulfates with dimethyl sulfoxide containing water or methanol. Carbohydr. Res. 58: 47–55.

    Google Scholar 

  • Nunn JR, Parolis H, Russell I (1971) Sulphated polysaccharides of the Solieriaceae family. Part I. A polysaccharide from Anatheca dentata. Carbohydr. Res. 20: 205–215.

    Google Scholar 

  • Percival E, McDowell RH (1967) Chemistry and Enzymology of Marine Algal Polysaccharides. London, Academic Press.

    Google Scholar 

  • Piculell L, Nilsson S, Muhrbeck P (1992) Effects of small amounts of kappa-carrageenan on the rheology of aqueous iotacarrageenan. Carbohydr. Polym. 18: 199–208.

    Google Scholar 

  • Piculell L, Borgström J, Chronakis IS, Quist PO, Viebke C (1997) Organisation and association of κ-carrageenan helices under different salt conditions. Int. J. Biol. Macromol. 21: 141–153.

    Google Scholar 

  • Picullel L (1995) Gelling carrageenans. In Stephen AM (ed.), Food Polysaccharides and their Applications, Marcel Dekker Inc., New York, pp. 205–244.

    Google Scholar 

  • Picullel L, Håkansson C, Nilsson S (1987) Cation specificity of the order-disorder transition in iota carrageenan: effects of kappa carrageenan impurities. Int. J. Biol. Macromol. 9: 297–301.

    Google Scholar 

  • Potin P, Bouarab K, Küpper F, Kloareg B (1999) Oligosaccharide recognition signals and defence reactions in marine plant-microbe interactions. Curr. Opin. Microbiol. 2: 276–283.

    Google Scholar 

  • Quemener B, Lahaye M (1998) Comparative analysis of sulfated galactans from red algae by reductive hydrolysis and mild methanolysis coupled to two different HPLC techniques. J. appl. Phycol. 10: 75–81.

    Google Scholar 

  • Quemener B, Lahaye M, Metro (1995) Assessment of methanolysis for the determination of composite sugars of gelling carrageenans and agarose by HPLC. Carbohydr. Res. 266: 53–64.

    Google Scholar 

  • Quemener B, Marot C, Mouillet L, Da Riz V, Diris J (2000) Quantitative analysis of hydrocolloids in food systems by methanolysis coupled to reverse HPLC: 1. Gelling carrageenans. Food Hydrocol. 14: 9–17.

    Google Scholar 

  • Rees A (1961) Enzymic synthesis of 3: 6–anhydro-L-galactose within porphyran from L-galactose-6–sulphate units. Biochem. J. 81: 347–352.

    Google Scholar 

  • Rees DA, Morris ER, Thom D, Madden JK (1982) Shapes and interactions of carbohydrate chains. In Aspinall GO (ed.), The Polysaccharides Vol 1. Academic press, New York, pp. 195–290.

    Google Scholar 

  • Rees DA, Scott WE, Williamson FB (1970) Correlation of optical activity with polysaccharide conformation. Nature (Lond.) 227: 390–392.

    Google Scholar 

  • Rinaudo M, Rochas C (1981) Investigations of aqueous solution properties of κ-carrageenans. ACS Symp. Ser. 150: 367–378.

    Google Scholar 

  • Rochas C, Heyraud A (1981) Acid and enzymic hydrolysis of kappa carrageenan. Polymer Bull. 5: 81–86.

    Google Scholar 

  • Rochas C, Lahaye M (1989a) Solid state 13C-NMR spectroscopy of red seaweeds, agars and carrageenans. Carbohydr. Polym. 10: 189–204.

    Google Scholar 

  • Rochas C, Lahaye M (1989b) Average molecular weight and molecular weight distribution of agarose and agarose-type polysaccharides. Carbohydr. Polym. 10: 289–298.

    Google Scholar 

  • Rochas C, Lahaye M, Yaphe W (1986a) Sulfate content of carrageenan and agar determined by infrared spectroscopy. Bot. mar. 29: 335–340.

    Google Scholar 

  • Rochas C, Lahaye M, Yaphe W, Phan Viet MT (1986b) 13C NMR-spectroscopic investigation of agarose oligomers. Carbohydr. Res. 148: 199–207.

    Google Scholar 

  • Rochas C, Rinaudo M (1980) Activity coefficients of counterions and conformation in kappa-carrageenan systems. Biopolymers 19: 1675–1687.

    Google Scholar 

  • Rochas C, Rinaudo M, Landry S (1990) Role of the molecular weight on the mechanical properties of kappa carrageenan gels. Carbohydr. Polym. 12: 255–266.

    Google Scholar 

  • Rochas C, Rinaudo M, Vincendon M (1983) Spectroscopic characterization and conformation of oligo kappa carrageenans. Int. J. Biol. Macromol. 5: 111–115.

    Google Scholar 

  • Saitô H, Yokoi M, Yamada J (1990) Hydration-dehydrationinduced conformational changes of agarose, and kappa-and iota-carrageenans as studied by high-resolution solid-state 13C-nuclear magnetic resonance spectroscopy. Carbohydr. Res. 199: 1–10.

    Google Scholar 

  • Schafer SE, Stevens ES (1995) A reexamination of the double-helix model for agarose gels using optical rotation. Biopolymers 36: 103–108.

    Google Scholar 

  • Sekkal M, Huvenne JP, Legrand P, Sombret B, Mollet JC Mouradi-Givernaud A, Verdus MC (1993) Direct structural identification of polysaccharides from red algae by FTIR microscopy I: localization of agar in Gracilaria verrucosa sections. Mikrochim. Acta 112: 1–10.

    Google Scholar 

  • Sekkal M, Legrand P (1993) A spectroscopic investigation of the carrageenans and agar in the 1500–100 cm-1 spectral range. Spectrochim. Acta 49A: 209–221.

    Google Scholar 

  • Singh SK, Jacobson SP (1994) Kinetics of acid hydrolysis of κ-carrageenan as determined by molecular weight (SEC-MALLSRI), gel breaking strength, and viscosity measurements. Carbohydr. Polym. 23: 89–13.

    Google Scholar 

  • Slootmaekers D, van Dijk JAPP, Vakevisser FA, Bloys van Treslong CJ, Reynaers H (1991) Molecular characterisation of κ-and λ-carrageenan by gel permeation chromatography, light scattering, sedimentation analysis and osmometry. Biophys. Chem. 41: 51–59.

    Google Scholar 

  • Smidsrød O, Grasdalen H (1984) Conformations of κ-carrageenan in solution. Hydrobiologia 116/117: 178–186.

    Google Scholar 

  • Stancioff D, Stanley NF (1969) Infrared and chemical studies on algal polysaccharides. Proc. Int. Seaweed Symp. 6: 595–609.

    Google Scholar 

  • Stanley NF (1987) Production, properties and uses of carrageenan. In McHugh DJ (ed.), Production and Utilization of Products from Commercial Seaweeds. FAO Fish. Tech. Pap. 288: 116–146.

    Google Scholar 

  • Stanley NF (1995) Agars. In Stephen AM (ed.), Food Polysaccharides and Their Applications. Marcel Dekker Inc., New York, pp. 187–204.

    Google Scholar 

  • Stevenson TT, Furneaux RH (1991) Chemical methods for the analysis of sulphated galactans from red algae. Carbohydr. Res. 210: 277–298.

    Google Scholar 

  • Stortz CA, Bacon BE, Cherniak R, Cerezo AS (1994) High-field NMR spectroscopy of cystocarpic and tetrasporic carragenans from Iridaea undulosa. Carbohydr. Res. 261: 317–326.

    Google Scholar 

  • Stortz CA, Cerezo AS (1992) The carbon-13 NMR spectroscopy of carrageenans: calculation of chemical shifts and computer aided structural determination. Carbohydr. Polym. 19: 237–242.

    Google Scholar 

  • Takano R, Iwane-Sakata H, Hayashi K, Hara S, Hirase S (1998) Concurrence of agaroid and carrageenan chains in funoran from the red seaweed Gloiopeltis furcata Post. et Ruprecht (Cryptonemiales, Rhodophyta). Carbohydr. Polym. 35: 81–87.

    Google Scholar 

  • Takano R, Kamei-Hayashi K, Hara S, Hirase S (1993) Assignment of the absolute configuration of partially methylated galactoses by combined gas-liquid chromatography-mass spectrometry. Biosc. Biotech. Biochem. 57: 1195–1197.

    Google Scholar 

  • Takano R, Nose Y, Hayashi K, Hara S, Hirase S (1994) Agarosecarrageenan hybrid polysaccharides from Lomentaria catenata. Phytochemistry 37: 1615–1619.

    Google Scholar 

  • Tashiro Y, Ogawa H, Iso N (1997) Sedimentation analysis of agar molecule. Fish. Sci. 63: 281–285.

    Google Scholar 

  • Turvey JR (1965) Sulfates of the simple sugars. Adv. Carbohydr. Chem. 20: 183–218.

    Google Scholar 

  • Turvey JR, Bowker DM, Harris MJ (1967) Infrared spectra of carbohydrate sulphates. Chem. Ind.: 2081.

  • Turvey JR, Christison J (1967) The enzymatic degradation of porphyran. Biochem. J. 195: 317–321.

    Google Scholar 

  • Ueda K, Itoh M, Matsuzaki Y, Ochiai H, Imamura A (1998) Observation of the molecular weight change during the helix-coil transition of κ-carrageenan measured by SEC-LALLS methods. Macromolecules 31: 675–680.

    Google Scholar 

  • Usov AI (1984) NMR spectroscopy of red seaweed polysaccharides: agars, carrageenans, and xylans. Bot. mar. 27: 189–202.

    Google Scholar 

  • Usov AI (1993) A new chemical tool for characterization and partial depolymerization of red algal galactans. Hydrobiologia 260/261: 641–645.

    Google Scholar 

  • Usov AI (1998) Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocol. 12: 301–308.

    Google Scholar 

  • Usov AI, Barbakadze VV (1978) Polysaccharides of algae. XXVII Partial acetolysis of the sulfated galactan from the red seaweed Grateloupia divaricata Okam. Bioorg. Khim. 4: 1107–1115.

    Google Scholar 

  • Usov AI, Ivanova EG (1987) Polysaccharides from algae XXVII. Characterization of hybrid structure of substituted agarose from Polysiphonia morrowii (Rhodophyta, Rhodomelaceae) using-agarase and 13C-NMR spectroscopy. Bot. mar. 30: 365–370.

    Google Scholar 

  • Usov AI, Ivanova EG, Shashkov AS (1983) Polysaccharides of algae XXXIII: Isolation and 13C NMR spectral study of some gel-forming polysaccharides from Japan Sea red seaweeds. Bot. mar. 26: 285–294.

    Google Scholar 

  • Usov AI, Klochkova NG (1992) Polysaccharides of algae 45. Polysaccharide composition of red seaweeds from Kamchatka coastal waters (Northwestern Pacific) studies by reductive hydrolysis of biomass. Bot. mar. 35: 371–378.

    Google Scholar 

  • Usov AI, Shashkov AS (1985) Polysaccharides of algae. XXIV. Detection of iota-carrageenan in Phyllophora brodiaei (Turn.) J. Ag. (Rhodophyta) using 13C-NMR spectroscopy. Bot. mar. 38: 367–373.

    Google Scholar 

  • Usov AI, Yarotsky SV, Shashkov AS (1980) 13C NMR spectroscopy of red algal galactans. Biopolymers 19: 977–990.

    Google Scholar 

  • Vanneste K, Slootmaekers D, Reynaers H (1996) Light scattering studies of the dilute solution behaviour of κ-, ι-and λ-carrageenan. Food Hydrocol. 10: 99–107.

    Google Scholar 

  • Viebke C, Borgström J, Piculell L (1995) Characterisation of kappaand iota-carrageenan coils and helices by MALLS/GPC. Carbohydr. Polym. 27: 145–154.

    Google Scholar 

  • Viebke C, Piculell L, Nilsson S (1994) On the mechanism of gelation of helix-forming biopolymers. Macromolecules 27: 4160–4166.

    Google Scholar 

  • Wong KF, Craigie JS (1978) Sulfohydrolase activity and carrageenan biosynthesis in Chondrus crispus (Rhodophyceae). Plant Physiol. 61: 663–666.

    Google Scholar 

  • Zhang W, Piculell L, Nilsson S (1991) Salt dependence and ion specificity of the coil-helix transition of furcellaran. Biopolymers 31: 1727–1736.

    Google Scholar 

  • Zhang W, Piculell L, Nilsson S, Knutsen S (1994) Cation specificity and cation binding to low sulfated carrageenans. Carbohydr. Polym. 23: 105–110.

    Google Scholar 

  • Zhong HJ, Williams MAK, Goodall DM, Hansen ME (1998) Capillary electrophoresis studies of pectins. Carbohydr. Res. 308: 1–8.

    Google Scholar 

  • Zinoun M, Diouris M, Potin P, Floc'h JY, Deslandes E (1997) Evidence of sulfohydrolase activity in the red alga Calliblepharis jubata. Bot. mar. 40: 49–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahaye, M. Developments on gelling algal galactans, their structure and physico-chemistry. Journal of Applied Phycology 13, 173–184 (2001). https://doi.org/10.1023/A:1011142124213

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011142124213

Navigation