Skip to main content
Log in

Optical Properties of Polyimide Films in the Infrared

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The objective of this study is to determine the infrared optical constants of polyimide films in the spectral range between 2000 and 7000 cm-1using a five-oscillator Lorentz model. Model parameters are presented, in addition to the derived values of the complex refractive index and dielectric constant. The parameters were obtained using electromagnetic theory for thin films to model reflectivity data from two film samples with different thicknesses (5.17 and 12.4 μm) on gold substrates examined at two incident angles. Measurements were taken using a polarizable reflectometer device in a Fourier transform infrared (FTIR) spectrometer. The real part of the refractive index, n, is shown to be about 1.67, while the imaginary part, k, is less than 0.01 over the spectral range examined. Results are consistent with findings of other experimentalists, and new data presented here show that polarization effects on thin film layers are predictable from the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. Y. Wong, B. D. Heilman, and I. N. Miaoulis, Microscale Heat Transfer 291:27 (1994).

    Google Scholar 

  2. A. R. Abramson and C. L. Tien, Microscale Therm. Eng. 3:229 (1999).

    Google Scholar 

  3. S. S. Hardaker, S. Moghazy, C. Y. Cha, and R. J. Samuels, J. Polym. Sci. Pol. Phys. 31:1951 (1993).

    Google Scholar 

  4. K. R. Ha and J. L. West, Mol. Cryst. Liq. Cryst. 323:129 (1998)

    Google Scholar 

  5. B. Li, T. He, and M. Ding, Thin Solid Films 320:280 (1998).

    Google Scholar 

  6. K. Sakamoto, R. Arafune, and S. Ushioda, Appl. Spectrosc. 51:541 (1997).

    Google Scholar 

  7. C. R. Lavers, Thin Solid Films 289:133 (1996).

    Google Scholar 

  8. R. Wolf, H. G. Birken, and C. Kunz, Appl. Opt. 31:7313 (1992).

    Google Scholar 

  9. Z. M. Zhang, G. Lefever-Burton, and F. R. Powell, Int. J. Thermophys. 19:905 (1998).

    Google Scholar 

  10. HD Microsystems, Pyralin ® PI2720 Processing Guidelines(1998), pp. 1–16.

  11. J. N. Ford, K. Tang, and R. O. Buckius, J. Heat Transfer 117:955 (1995).

    Google Scholar 

  12. M. Q. Brewster, Thermal Radiative Transfer and Properties(Wiley, New York, 1992), pp. 114–152, 504.

    Google Scholar 

  13. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), Chaps. 1, 13.

    Google Scholar 

  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles(Wiley, New York, 1983), Chap. 9.

    Google Scholar 

  15. K. Sakamoto, R. Arafune, S. Ushioda, Y. Suzuki, and S. Morokawa, J. Appl. Phys. 80:431 (1996).

    Google Scholar 

  16. H. Ishida and M. T. Huang, J. Polym. Sci. Pol. Phys. 32:2271 (1994).

    Google Scholar 

  17. M. Saito, T. Gojo, Y. Kato, and M. Miyagi, Infrared Phys. Tecnhol. 36:1125 (1995).

    Google Scholar 

  18. U. Goeschel, H. Lee, D. Y. Yoon, R. L. Siemens, B. A. Smith, and W. Volksen, Colloid Polym. Sci. 272:1388 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Buckius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawka, P.A., Buckius, R.O. Optical Properties of Polyimide Films in the Infrared. International Journal of Thermophysics 22, 517–534 (2001). https://doi.org/10.1023/A:1010797620483

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010797620483

Navigation