Skip to main content
Log in

The Carboxin-Binding Site on Paracoccus denitrificans Succinate:Quinone Reductase Identified by Mutations

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Succinate:quinone reductase catalyzes electron transfer from succinate to quinone in aerobic respiration. Carboxin is a specific inhibitor of this enzyme from several different organisms. We have isolated mutant strains of the bacterium Paracoccus denitrificans that are resistant to carboxin due to mutations in the succinate:quinone reductase. The mutations identify two amino acid residues, His228 in SdhB and Asp89 in SdhD, that most likely constitute part of a carboxin-binding site. This site is in the same region of the enzyme as the proposed active site for ubiquinone reduction. From the combined mutant data and structural information derived from Escherichia coli and Wolinella succinogenes quinol:fumarate reductase, we suggest that carboxin acts by blocking binding of ubiquinone to the active site. The block would be either by direct exclusion of ubiquinone from the active site or by occlusion of a pore that leads to the active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ackrell, B. A. C. (2000). FEBS Lett. 466, 1–5.

    Google Scholar 

  • Ackrell, B. A. C., Kearney, E. B., Coles, C. J., Singer, T. P., Beinert, H., Wan, Y. P., and Folkers, K. (1977). Arch. Biochem. Biophys. 182, 107–117.

    Google Scholar 

  • Ackrell, B. A. C., Johnson, M. K., Gunsalus, R. P., and Cecchini, G. (1992). In Chemistry and Biochemistry of Flavoenzymes III: Structure and Function of Succinate Dehydrogenase and Fumarate Reductase (Müller, F., ed.), CRC Press, Boca Raton, FL, pp. 229–297.

    Google Scholar 

  • Broomfield, P. L. E. and Hargreaves, J. A. (1992). Curr. Genet. 22, 117–121.

    Google Scholar 

  • Coles, C. J., Singer, T. P., White, G. A., and Thorn, G. D. (1978). J. Biol. Chem. 253, 5573–5578.

    Google Scholar 

  • de Vries, G. E., Harms, N., Hoogendijk, J., and Stouthamer, A. H. (1989). Arch. Microbiol. 152, 52–57.

    Google Scholar 

  • Gerhus, E., Steinrücke, P., and Ludwig, B. (1990). J. Bacteriol. 172, 2392–2400.

    Google Scholar 

  • Grigolava, I. V., Konstantinov, A. A., Ksenzenko, M. Y., Ruuge, É. K., and Tikhonov, A. N. (1982). Biokhimiia 47, 1970–1982.

    Google Scholar 

  • Grivennikova, V. G. and Vinogradov, A. D. (1985). Biokhimiia 50, 375–383.

    Google Scholar 

  • Hägerhäll, C. (1997). Biochim. Biophys. Acta 1320, 107–141.

    Google Scholar 

  • Hägerhäll, C. and Hederstedt, L. (1996). FEBS Lett. 389, 25–31.

    Google Scholar 

  • Iverson, T. M., Luna-Chavez, C., Cecchini, G., and Rees, D. C. (1999). Science 284, 1961–1966.

    Google Scholar 

  • Keon, J. P. R., White, G. A., and Hargreaves, J. A. (1991). Curr. Genet. 19, 475–481.

    Google Scholar 

  • Lancaster, C. R. D. and Kröger, A. (2000). Biochim. Biophys. Acta 1459, 422–431.

    Google Scholar 

  • Lancaster, C. R. D., Kröger, A., Auer, M., and Michel, H. (1999). Nature London 402, 377–385.

    Google Scholar 

  • Matsson, M., Ackrell, B. A. C., Cochran, B., and Hederstedt, L. (1998). Arch. Microbiol. 170, 27–37.

    Google Scholar 

  • Ohnishi, T., Moser, C. C., Page, C. C., Dutton, P. L., and Yano, T. (2000). Structure 8, 23–32.

    Google Scholar 

  • Ramsay, R. R., Ackrell, B. A. C., Coles, C. J., Singer, T. P., White, G. A., and Thorn, G. D. (1981). Proc. Natl. Acad. Sci. USA 78, 825–828.

    Google Scholar 

  • Schirawski, J. and Unden, G. (1998). Eur. J. Biochem. 257, 210–215.

    Google Scholar 

  • Shenoy, S. K., Yu, L., and Yu, C. A. (1999). J. Biol. Chem. 274, 8717–8722.

    Google Scholar 

  • Simon, R., Priefer, U., and Puhler, A. (1983). Biotechnology 1, 784–791.

    Google Scholar 

  • Skinner,W., Bailey, A., Renwick, A., Keon, J., Gurr, S., and Hargreaves, J. (1998). Curr. Genet. 34, 393–398.

    Google Scholar 

  • Vibat, C. R. T., Cecchini, G., Nakamura, K., Kita, K., and Gennis, R. B. (1998). Biochemistry 37, 4148–4159.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsson, M., Hederstedt, L. The Carboxin-Binding Site on Paracoccus denitrificans Succinate:Quinone Reductase Identified by Mutations. J Bioenerg Biomembr 33, 99–105 (2001). https://doi.org/10.1023/A:1010744330092

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010744330092

Navigation