Skip to main content
Log in

ALLELOPATHY, DIMBOA PRODUCTION AND GENETIC VARIABILITY IN ACCESSIONS OF Triticum Speltoides

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

A screening was conducted to study the allelopathic potential of Australian-held accessions of Triticum speltoides. Of 26 accessions, four were found to inhibit root growth in the indicator species, lettuce (Lactuca sativa). The methanol leaf extracts of these accessions significantly reduced the root length of wild oat (Avena spp.). In all but one case, alellopathic accessions contained higher amounts of DIMBOA than did nonallelopathic accessions. Since some variation in allelopathic response was detected within lines, random amplified polymorphic DNA (RAPD) markers were used to estimate genetic diversity between and within the allelopathic accessions of Triticum speltoides L. The average genetic similarity between all possible pairs of selected accessions was found to be 55% and ranged from 44% to 88%. Comparison of DNA extracted from different single seedlings within the same accession revealed significant intraaccession genetic diversity (4–24%), although this was much less than that observed between accessions tested. This intraaccession diversity has significant implications for the selection of T. speltoides accessions in breeding or screening programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • ALBABUSHEV, V. A. 1977. Water absorption by crop seeds during germination. Field Crop Abstr. 32:251.

    Google Scholar 

  • BASSAM, B. J., and CAETANO-ANOLLES, G. 1993. Silver staining of DNA in polyacrylamide gels. Appl. Biochem. Biotechnol.42:181-188.

    Google Scholar 

  • BOHIDAR, K., WRATTEN, S. D., and NIEMEYER, H. M. 1986. Effects of hydroxamic acids on the resistance of wheat to the aphid Sitobion avenae. Ann. Appl. Biol.109:193-198.

    Google Scholar 

  • B0UTSALIS, P., and POWLES, S. B. 1995. Resistance of dicot weeds to acetolactate synthase (ALS)-inhibiting herbicides in Australia. Theor. Appl. Genet.35:149-155.

    Google Scholar 

  • BUSTOS, A. D., CSASNOVA, C., SOLER, C., and JOUVE, N. 1998. RAPD variation in wild populations of four species of the genus Hordeum(Poaceae). Theor. Appl. Genet.96:101-111.

    Google Scholar 

  • CHEN, P. D., TSUJIMOTO, H., and GILL, B. S. 1994. Transfer of Ph1genes promoting homologous pairing from Triticum speltoidesto common wheat. Theor. Appl. Genet.88:97-101.

    Google Scholar 

  • CREAMER, N. G., BENNETT, M. A., STINNER, B. R., CARDINA, J., and REGNIER, E. E. 1996. Mechanisms of weed suppression in cover crop-based production systems. Hortic. Sci.31:410-413.

    Google Scholar 

  • DEVOS, K. M., and GALE, M. D. 1992. The use of random amplified polymorphic DNA markers in wheat. Theor. Appl. Genet.84:567-572.

    Google Scholar 

  • EINHELLIG, F. A. 1995. Mechanism of action of allelochemicals in allelopathy, pp. 96-116, inInderjit, K. M. M. Dakshini and F. A. Einhellig (eds.). Allelopathy, Organisms, Processes, and Applications. American Chemical Society, Washington, DC.

    Google Scholar 

  • FUERST, E. P., and PUTNAM, A. R. 1983. Separating the competitive and allelopathic components of interference. Theoretical principles. J. Chem. Ecol.19:937-944.

    Google Scholar 

  • FUJII, Y. 1993. The allelopathic effect of some rice varieties. Allelopathy in control of paddy weeds. ASPAC Food & Fertilizer Technology Centre, Technical Bulletin No. 134. Taipei, Taiwan. (ASPAC Asia Pacific).

    Google Scholar 

  • FUJII,Y., INOUE, H., ONO, S., SATO, K., KHAN, B. A., and WALLER, G.R. 1995. Screening of allelopathic cover crops and their application to abandoned fields. pp. 305-310, inProceedings I (A), 15th Asian-Pacific Weed Science Society Conference, July 24-28, 1995. Tsukuba, Japan.

  • HASHEM, A., and ADKINS, S. W. 1998. Allelopathic effects of Triticum speltoideson two important weeds of wheat. Plant Prot. Q. 13:33-35.

    Google Scholar 

  • HOFFMAN, M. L., WESTON, L. A., SNYDER, J. C., and REGNIER, E. 1996. Allelopathic influence of germinating seeds of cover crops on weed species. Weed Sci.44:597-584.

    Google Scholar 

  • JIMENEZ-OSORINO, F. M. V. Z., KUMAMOTO, J., and WASSER, C. 1996. Allelopathic activity of Chenopodium ambrosioidesL. J. Chem. Ecol.24:195-205.

    Google Scholar 

  • JIWAN, J. S., and GATES, G. W. 1994. Water down under. Conference proceedings of the institute of engineers, Barton ACT, Australia, pp. 21-24.

  • LATTO, J., and WRIGHT, H. 1995. Allelopathy in seeds. J. Biol. Educ.29:123-128.

    Google Scholar 

  • LINK, W., DIXKENS, C., SINGH M., SCHWALL, A., and MELCHINGER, 1995. Genetic diversity in European and Mediterranean faba bean germplasms revealed by RAPD markers. Theor. Appl. Genet.90:27-32.

    Google Scholar 

  • LIU, D. L., and LOVETT, J. V. 1993. Biologically active secondary metabolites of barley. I: Developing techniques and assessing allelopathy in barley. J. Chem. Ecol.19:2217-2230.

    Google Scholar 

  • LOVETT, J. V. 1982. The effect of allelochemicals on crop growth and development, pp. 93-110, inJ. S. McLaren (ed.). Chemical Manipulation of Growth and Development. Butterworths, London.

    Google Scholar 

  • LOVETT, J. V., and HOULT, A. H. C. 1995. Allelopathy and self-defence in barley, pp. 170-183, inInderjit, K. M. M. Dakshini and F. A. Einhellig (eds.). Allelopathy, Organisms, Processes, and Applications. American Chemical Society, Washington, DC.

    Google Scholar 

  • MA, W. 2000. Molecular mapping of dough properties in wheat. PhD dissertation. University of Southern Queensland, Toowoomba.

    Google Scholar 

  • MEDD, R. W. 1997. Biological change: weeds pp. 131-149, inA. L. Clarke and P. B. Wylie (eds.). Sustainable Crop Production in the Sub-tropics: An Australian Perspective. Queensland Department of Primary Industries, Brisbane.

    Google Scholar 

  • MORRISON, L. A. 1993. Triticum-Aegilopssystematics: Taking an integrative approach, pp. 59-66, inA. B. Damania and A Wiley-Sayca (ed.). Biodiversity and Wheat Improvement. ICARDA-International Centre for Agricultural Research in the Dry Areas. Aleppo, Syria.

    Google Scholar 

  • NIEMEYER, H. M. 1988. Hydroxamic acids content of Triticumspecies. Euphytica37:289-293.

    Google Scholar 

  • NIEMEYER, H. M., and PEREZ, F. 1995. Potential of hydroxamic acids in the control of cereal pest, disease, and weeds, pp. 260-270, inInderjit, K. M. M. Dakshini and F. A. Einhellig (eds.). Allelopathy, Organisms, Processes, and Applications. American Chemical Society, Washington, DC.

    Google Scholar 

  • PUTNAM, A. R. 1985. Weed Physiology. Boca Raton, Florida.

  • RICE, E. L. 1979. Allelopathy-an update. Bot. Rev.45:15-109.

    Google Scholar 

  • RILEY, R. 1996. The genetic regulation of meiotic behaviour in wheat and its relatives. Hereditas2(suppl.):395-408.

    Google Scholar 

  • ROHLF, F. J. 1993. NTSYS-pc, Numarical Taxonomy and Multivariate Analysis System, Version 1.8. Applied Biostatistics, Inc., New York.

    Google Scholar 

  • SNEATH, P. H. A., and SOKAL, R. R. 1973. Numerical Taxonomy. Freeman, San Francisco.

    Google Scholar 

  • SOKAL, R. R., and ROHLF, F. J. 1981. Biometry. W. H. Freeman & Co, New York.

    Google Scholar 

  • STOWE, L. G. 1979. Allelopathy and its influence on the distribution of plants in an Illinois old-field. J. Ecol.67:1065-1085.

    Google Scholar 

  • TRIPTON, C. L., KLUN, J. A., HUSTED, R. R., and PIERSON, M. D. 1967. Cyclic hydroxamic acids and related compounds from maize: Isolation and characterization. Biochemistry6:2866-2870.

    PubMed  Google Scholar 

  • VERONNEAU, H., GREER, A. F., DAIGLE, S., and VINCENT, G. 1997. Use of mixtures of allelochemicals to compare bioassays using red maple, pin cherry, and American elm. J. Chem. Ecol.23:1101-1117.

    Google Scholar 

  • WARDLE, D. A., NICHOLSON, K. S., and RAHMAN, M. 1996. Use of a comparative approach to identify allelopathic potential and relationship between allelopathy bioassays and “competition” experiments for ten grassland and plant species. J. Chem. Ecol.22:933-948.

    Google Scholar 

  • WEINING, S., KO, L., and HENRY, R. J. 1994. Polymorphisms in the β-amy1gene of wild and cultivated barley revealed by the polymerase chin reaction. Theor. Appl. Genet.89:509-513.

    Google Scholar 

  • WEISING, K., NYBOM, H., WOLFF, K., and MEYER,W. 1995. DNA Fingerprinting in Plants and Fungi. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • WILLIAMS, J. G. K., KUBELIK, A. R., LIVAK, K. J., RAFALSKI, J. A., and TINGEY, S. V. 1990. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res.18:6531-6535.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quader, M., Daggard, G., Barrow, R. et al. ALLELOPATHY, DIMBOA PRODUCTION AND GENETIC VARIABILITY IN ACCESSIONS OF Triticum Speltoides. J Chem Ecol 27, 747–760 (2001). https://doi.org/10.1023/A:1010354019573

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010354019573

Navigation