Skip to main content
Log in

Analysis of yeasts derived from natural fermentation in a Tokaj winery

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The diversity of yeast flora was investigated in a spontaneously fermenting sweet white wine in a Tokaj winery. The non-Saccharomyces yeasts dominating the first phase of fermentation were soon replaced by a heterogeneous Saccharomycespopulation, which then became dominated by Saccharomyces bayanus. Three Saccharomyces sensu stricto strains isolated from various phases of fermentation were tested for genetic stability, optimum growth temperature, tolerance to sulphur dioxide, copper and ethanol as well as for the ability to produce hydrogen sulphide and various secondary metabolites known to affect the organoleptic properties of wines. The analysis of the single-spore cultures derived from spores of dissected asci revealed high stability of electrophoretic karyotypes and various degrees of heterozygosity for mating-types, the fermentation of galactose and the production of metabolic by-products. The production levels of the by-products did not segregate in a 2:2 fashion, suggesting that the synthesis of these compounds is under polygenic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barnett JA, Payne RW & Yarrow D (1990) Yeasts: Characteristics and Identification, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Boulton B, Singleton VL, Bisson LF & Kunkee RE (1966) Yeast and biochemistry of ethanol fermentation. In: Boulton B, Singleton VL, Bisson LF, Kunkee RE (Eds) Principles and Practices of Winemaking (pp 139-172). Chapman and Hall, New York

    Google Scholar 

  • Brady D, Glaum D & Duncan J-R (1994) Copper tolerance in Saccharomyces cerevisiae. Lett. Appl. Microbiol. 18: 245-250

    Google Scholar 

  • Brandolini V, Menziani E, Mazzotta D, Vecchiati G & Ponti I (1995) Impatto ambientale dell'impiego del rame in viticoltura. Vitivinicoltura 39: 53-56

    Google Scholar 

  • D'Amore T & Stewart GG (1987) Ethanol tolerance of yeast. Enzyme Microb. Technol. 9: 322-330

    Google Scholar 

  • Degre R (1993) Selection and commercial cultivation of wine yeasts and bacteria. In: Fleet GH (Ed) Wine Microbiology and Biotechnology (pp 421-447). Harwood Academic Publishers, Chu

  • Dittrich HH (1987) Mikrobiologie des Weines. Ullmer, Stuttgart Doneche BJ (1993) Botrytized wines. In: Fleet GH (Ed) Wine Microbiology and Biotechnology (pp 327-351). Harwood Academic Publishers, Chur

    Google Scholar 

  • Fugelsang KC (1997) Wine Microbiology. Chapman and Hall, New York

    Google Scholar 

  • Giudici P, Zambonelli C, Passarelli P & Castellari L (1995) Improvement of wine composition with cryotolerant Saccharomyces strains. Am. J. Enol. Vitic. 46: 143-147

    Google Scholar 

  • Giudici P, Caggia C, Pulvirenti A & Rainieri S (1998) Karyotyping of Saccharomyces strains with different temperature profiles. J. Appl. Microbiol. 84: 811-819

    Google Scholar 

  • Giudici P, Romano P, Zambonelli C (1990) A biometric study of higher alcohol production in Saccharomyces cerevisiae. Can. J. Microbiol. 36: 61-64

    Google Scholar 

  • Heard G (1999) Novel yeasts in winemaking-looking to the future. Food Australia 51: 347-352

    Google Scholar 

  • Henick-Kling T, Edinger W, Daniel P & Monk P (1998) Selective effects of sulfur dioxide and yeast starter culture addition on indigenous yeast populations and sensory characteristics of wine. J. Appl. Microbiol. 84: 865-876

    Google Scholar 

  • Kishimoto M & Goto S (1995) Growth temperatures and electrophoretic karyotyping as tools for practical discrimination of Saccharomyces bayanus and Saccharomyces cerevisiae. J. Gen. Appl. Microbiol. 41: 239-247

    Google Scholar 

  • Kreger-van Rij NJW (1984) The Yeasts. a Taxonomic Study, 3rd edn. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Kunkee RE, Amerine MA (1970) Yeast in wine-making. In The Yeast. vol 3 Yeast Technology, Rose AH, Harrison JS (eds). Academic Press: New York 5-57, 1970

    Google Scholar 

  • Lema C, Garcia-Jares C, Orriols I & Angulo L (1996) Contribution of Saccharomyces and non-Saccharomyces populations to the production of some components of Albarino wine aroma. Am. J. Enol. Vutic. 47: 206-216

    Google Scholar 

  • Longo E. & Vezinhet F (1993) Chromosomal rearrangements during vegetative growth of a wild strain of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 59: 322-326

    Google Scholar 

  • Martini A (1993) Origin and domestication of the wine yeast Saccharomyces cerevisiae. J. Wine Res. 4: 165-176

    Google Scholar 

  • Miklos I & Sipiczki M (1991) Breeding of a destiller's yeast by hybridization with a wine yeast. Appl. Microbiol. Biotechnol. 35: 638-642

    Google Scholar 

  • Miklos I, Varga T, Nagy A & Sipiczki M (1997) Genome instability and chromosomal rearrangement in a heterothallic wine yeast. J. Basic. Microbiol. 5: 345-354

    Google Scholar 

  • Mortimer R & Polsinelli M (1999) On the origins of wine yeast. Res. Microbiol. 150: 199: 204

    Google Scholar 

  • Mortimer RK, Romano P, Suzzi G & Polsinelli M (1994) Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts. Yeast 10: 1543-155

    Google Scholar 

  • Nadal D, Colomer B & Pina B (1996) Molecular polymorphism distribution in phenotypically distinct populations of wine yeast strains. Appl. Environm. Microbiol. 62: 1944-1950

    Google Scholar 

  • Naumov GI (1996) Genetic identification of biological species in the Saccharomyces sensu stricto complex. J. Ind. Microbiol. 17: 295-302

    Google Scholar 

  • Nykaenen L (1986) Formation an occurrence of flavour compounds in wine and distilled alcoholic beverages. Am. J. Enol. Vitic. 37: 84-96

    Google Scholar 

  • Paraggio M, Capece A, Lipani G & Romano P (1998) Fermentation characteristics of Saccharomyces cerevisiae isolates from Aglianico of Vulture in the Basilicata region of Southern Italy. Alcologia 10: 113-117

    Google Scholar 

  • Paraggio M, Marchese R, Laurita C & Romano P (1997) Resistenze al rame in lieviti da vino di diversa origine geografica. Proc. 3rd National Congr. on Biodiversitá: tecnologie-qualitá', Reggio Calabria (Italy), 16-17 June, (pp. 581-586)

  • Querol A & Ramon D (1996) The application of molecular techniques in wine microbiology. Trends in Food Sci. Technol. 7: 73-78

    Google Scholar 

  • Rainieri S, Zambonelli C, Hallsworth JE, Pulvirenti A & Giudici P (1999) Saccharomyces uvarum, a distinct group within Saccharomyces sensu stricto. FEMS Microbiol. Lett. 177: 177-185

    Google Scholar 

  • Romano P (1998) Metabolic characteristics of wine strains during spontaneous and inoculated fermentation. Food Technol. Biotechnol. 35: 255-260

    Google Scholar 

  • Romano P, Paraggio M & Turbanti L (1998) Stability in by-product formation as a strain selection tool of Saccharomyces cerevisiae wine yeasts. J. Appl. Microbiol. 84: 336-341

    Google Scholar 

  • Romano P, Suzzi G (1993) Sulfur dioxide and wine microorganisms. In: Fleet GH (Ed) Wine Microbiology and Biotechnology (pp 373-393). Harwood Academic Publishers, Chur

    Google Scholar 

  • Soles RM, Ough CS, Kunkee RE (1982) Ester concentration differences in wine fermented by various species and strains of yeasts. Am. J. Enol. Vitic. 33: 94-98

    Google Scholar 

  • Sponholz W-R (1993) Wine spoilage by microorganisms. In: Fleet GH (Ed) Wine Microbiology and Biotechnology (pp 395-420). Harwood Academic Publishers, Chur

    Google Scholar 

  • Subden RE (1990) Wine yeast: Selection and modification. In: Panchal CJ (Ed) Yeast Strain Selection (pp. 113-137). Marcel Dekker, Inc, New York and Basel

    Google Scholar 

  • Tornai-Lehoczki J & Dlauchy D (1996) An opportunity to distinguish species of Saccharomyces sensu stricto by electrophoretic separation of the larger chromosomes. Letters Appl. Microbiol. 23: 227-230

    Google Scholar 

  • Tornai-Lehoczki J, Peter G, Dlauchy D & Deak T (1996) Some remarks on “a taxonomic key for the genus Saccharomyces” (Vaughan Martini and Martini 1993). Antonie van Leeuwenhoek 69: 229-233

    Google Scholar 

  • Tromp A, De Klerk CA (1988) Effect of copperoxychloride on the fermentation of must and on wine quality. S. Afr. J. Enol. Vitic. 9: 31-36

    Google Scholar 

  • Vaughan-Martini A & Martini A (1993) A taxonomic key for the genus Saccharomyces. System. Appl. Microbiol. 16: 113-119

    Google Scholar 

  • Wenzel K, Dittrich HH, Seyffardt HP, Bohnert J (1980) Schwefelrückstände auf Trauben und im Most und ihr Einfluß auf die H2S-Bildung. Wein-Wissenschaft 35: 414-420

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sipiczki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipiczki, M., Romano, P., Lipani, G. et al. Analysis of yeasts derived from natural fermentation in a Tokaj winery. Antonie Van Leeuwenhoek 79, 97–105 (2001). https://doi.org/10.1023/A:1010249408975

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010249408975

Navigation