Skip to main content
Log in

Tissue-Specific Actions of Thyroid Hormone: Insights From Animal Models

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Brent GA. The molecular basis of thyroid hormone action. N Engl J Med 1994;331:847–853.

    Google Scholar 

  2. Motomura K, Brent GA. Mechanisms of thyroid hormone action: implications for the clinical manifestation of thyrotoxicosis. Endocrinol Metab Clin N Amer 1998;27:1–23.

    Google Scholar 

  3. Lazar MA. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 1993;14:270–279.

    Google Scholar 

  4. Koenig RJ. Thyroid hormone receptor coactivators and corepressors. Thyroid 1998;8:703–713.

    Google Scholar 

  5. Chatterjee VKK, Tata JR. Thyroid hormone receptors and their role in development. Cancer Survey 1992;14:147–167.

    Google Scholar 

  6. Schwartz HL, Strait KA, Ling NC, Oppenheimer JH. Quantitation of rat tissue thyroid hormone binding receptor isoforms by immunoprecipitation of nuclear triiodothyronine binding capacity. J Biol Chem 1992;267:11794–11799.

    Google Scholar 

  7. Wong R, Vasilyev VV, Ting Y-T, Kutler DI, Willingham MC, Weintraub BD, Cheng S-y. Transgenic mice bearing a human mutant thyroid hormone β1 receptor manifest thyroid function anomalies, weight reduction and hyperactivity. Mol Med 1997;3:303–314.

    Google Scholar 

  8. Hayashi Y, Xie J, Weiss RE, Pohlenz J, Refetoff S. Selective pituitary resistance to thyroid hormone produced by expression of a mutant thyroid hormone receptor β gene in the pituitary gland of transgenic mice. Biochem Biophys Res Comm 1998;245:204–210.

    Google Scholar 

  9. Abel ED, Kaulback HC, Campos-Barros A, Ahima RS, Boers M-E, Hashimoto K, Forrest D, Wondisford FE. Novel insight from transgenic mice into thyroid hormone resistance and the regulation of thyrotropin. J Clin Invest 1999;103:271–279.

    Google Scholar 

  10. Gloss B, Sayen MR, Trost SU, Bluhm WF, Meyer M, Swanson EA, Usala SJ, Dillmann WH. Altered cardiac phenotype in transgenic mcie carrying the Δ337 threonine thyroid hormone receptor β mutant derived from the S family. Endocrinology 1999;140:897–902.

    Google Scholar 

  11. Wikstrom L, Johansson C, Salto C, Barlow C, Barros AC, Bass F, Forrest D, Thoren P, Vennstrom B. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor. EMBO J 1998;16:4412–4420.

    Google Scholar 

  12. Fraichard A, Chassande O, Plateroti M, Roux JP, Trouillas J, Dehay C, Legrand C, Gauthier K, Kedinger M, Malaval L, Rousset B, Samarut J. The T3Rα gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production. The EMBO J 1997;16:4412–4420.

    Google Scholar 

  13. Forrest D, Erway LC, Ng L, Altschuler R, Curran T. Thyroid hormone receptor b is essential for development of auditory function. Nat Genet 1996;13:354–357.

    Google Scholar 

  14. Kaneshige M, Kaneshige K, Kazlauskaite R, Willingham M, Wynshaw-Boris T, Weintraub BD, Barlow C, Cheng S-Y. A ``knockin'' mouse model of thyroid hormone resistance syndrome. 72nd Annual Meeting of the American Thyroid Association, Palm Beach, FL. 1999;A95 (Abstract).

  15. Gothe S, Wang Z, Ng L, Kinblom JM, Barros AC, Ohlsson C, Vennstrom B, Forrest D. Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitarythyroid axis, growth, and bone maturation. Genes Dev 1999;13:1329–1341.

    Google Scholar 

  16. Gaurhier K, Chassande O, Plateroti M, Roux J-P, Legrand C, Pai B, Rousset B, Weiss R, Trouillas J, Samarut J. Different functions for the thyroid hormone receptors TRα and TRβ in the control of thyroid hormone production and post-natal development. EMBO J 1999;18:623–631.

    Google Scholar 

  17. Shuldiner AR. Transgenic animals. N Eng J Med 1996;334:653–655.

    Google Scholar 

  18. Refetoff S, Weiss RE, Usala SJ. The syndromes of resistance to thyroid hormone. Endocr Rev 1993;14:348–399.

    Google Scholar 

  19. Hsu J-H, Brent GA. Thyroid hormone receptor gene knockouts. Trends Endocrinol Metab 1998;9:103–112.

    Google Scholar 

  20. Forrest D, Hanebuth E, Smeyne RJ, Everds N, Stewart CL, Wehner JM, Curran T. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function. EMBO J 1996;15:3006–3015.

    Google Scholar 

  21. Weiss RE, Forrest D, Pohlenz J, Cua K, Curran T, Refetoff S. Thyrotropin regulation by thyroid hormone in thyroid hormone receptor β-deficient mice. Endocrinology 1997;138:3624–3629.

    Google Scholar 

  22. Weiss RE, Murata Y, Cua K, Hayashi Y, Seo H, Refetoff S. Thyroid hormone action on liver, heart, and energy expenditure in thyroid hormone receptor β-deficient mice. Endocrinology 1998;139:4945–4952.

    Google Scholar 

  23. Chassande O, Fraichard A, Gauthier K, Flamant F, Legrand C, Savatier P, Laudet V, Samarut J. Identification of transcripts initiated from an internal promoter in the c-erbAα locus that encode inhibitors of retinoic acid receptor-α and triiodothyronine receptor activities. Mol Endocrinol 1997;11:1278–1290.

    Google Scholar 

  24. Johansson C, Gothe S, Forrest D, Vennstrom B, Thoren P. Cardiovascular phenotype and temperature control in mice lacking thyroid hormone receptor-β or both α1 and β. Am J Physiol 1999;276:H2006-H2012.

    Google Scholar 

  25. Davis PJ, Davis FB. Nongenomic actions of thyroid hormone. Thyroid 1996;6:497–504.

    Google Scholar 

  26. Brent GA, Dunn MK, Harney JW, Gulick T, Larsen PR, Moore DD. Thyroid hormone aporeceptor represses T3-inducible promoters and blocks activity of the retinoic acid receptor. New Biologist 1989;1:329–336.

    Google Scholar 

  27. Larsen PR. Maternal thyroxine and congenital hypothyroidism. N Eng J Med 1989;321:44–46.

    Google Scholar 

  28. Vulsma T, Gons MH, DeVijlder JMM. Maternal fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect of thyroid dysgenesis. N Eng J Med 1989;321:13–16.

    Google Scholar 

  29. Xue-Yi C, Xin-Min J, Zhi-Hong D, Rakeman MA, Ming-Li Z, O'Donnell K, Tai M, Amette K, DeLong N, DeLong GR. Timing of vulnerability of the brain to iodine deficiency in endemic cretinism. N Eng J Med 1994;331:1739–1744.

    Google Scholar 

  30. Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, O'Heir CE, Mitchell ML, Hermos RJ, Waisbren SE, Faix JD, Klein R. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Eng J Med 1999;341:549–555.

    Google Scholar 

  31. Sieber R, Merlob P, Kaiserman I, Sack J. Congenital anomalies concomitant with persistent primary congenital hypothyroidism. Am J Med Genetics 1992;44:57–60.

    Google Scholar 

  32. Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzalez FJ. The T/ebp null mouse: thyroid-specific enhancerbinding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pitutiary. Genes Dev 1996;10:60–69.

    Google Scholar 

  33. Mansouri A, Chowdhury K, Gruss P. Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet 1998;19:87–90.

    Google Scholar 

  34. Lapi P, Maccchia PE, Chiovato L, Biffali E, Mochini L, Larizza D, Baserga M, Pinchera A, Fenzi G, Di Lauro R. Mutations in the gene encoding thyroid transcription factor-1 (TTF-1) are not a frequent cause of congenital hypothyroidism (CH) with thyroid dysgenesis. Thyroid 1997;7:383–387.

    Google Scholar 

  35. La Franchi S, Congenital hypothydroidism: etiologies, diagnosis, and management. Thyroid 1999, 9:735–740.

    Google Scholar 

  36. Porterfield SP, Hendrich CE. The role of thyroid hormones in prenatal and neonatal neurological development-current perspectives. Endocr Rev 1993;14:94–106.

    Google Scholar 

  37. Oppenheimer JH, Schwartz HL. Molecular basis of thyroid hormone-dependent brain development. Endocr Rev 1997;18:462–475.

    Google Scholar 

  38. Sandhofer CR, Schwartz HL, Mariash CN, Forrest D, Oppenheimer JH. Beta receptor isoforms are not essential for thyroid hormonedependent reglation of PCP2 and myelin basic protein gene expression in the developing brains of neonatal rats. Mol Cell Endocrinol 1998;137:109–115.

    Google Scholar 

  39. Anderson GW, Hagen SG, Larson RJ, Strait KA, Schwartz HL, Mariash CN, Oppenheimer JH. Purkinje cell protein-2 cis-elements mediate repression of T3-dependent transcriptional activation. Mol Cell Endocrinol 1997;131:79–87.

    Google Scholar 

  40. Anderson GW, Larson RJ, Sandhofer CR, Schwartz HL, Mariash CN, Oppenheimer JH. Chicker ovalbumin upstream promotertranscription factor (COUP-TF) modulates expression of the purkinje cell protein-2 gene. J Biol Chem 1998;273:16391–16399.

    Google Scholar 

  41. Koibuchi N, Chin WW. RORα gene expression in the perinatal rat cerebellum: ontogeny and thyroid hormone regulation. Endocrinology 1998;139:2335–2341.

    Google Scholar 

  42. Koibuchi N, Liu Y, Fukuda H, Takeshita A, Yen PM, Chin WW. RORα augments thyroid hormone receptor-mediated transcriptional activation. Endocrinology 1999;140:1356–1364.

    Google Scholar 

  43. Thompson CC, Botcher MC. The product of a thyroid hormoneresponsive gene interacts with thyroid hormone receptor. Proc Natl Acad Sci USA 1997;94:8527–8532.

    Google Scholar 

  44. Belandia B, Latasa MJ, Villa A, Pascual A. Thyroid hormone negatively regulates the transcriptional activity of the β-amyloid precursor protein gene. J Biol Chem 1998;273:30366–30371.

    Google Scholar 

  45. Hodin RA, Meng S, Chamberlain SM. Thyroid Hormone reponsiveness is developmentally regulated in the rat small intestine: a possible role for the alpha-2 receptor variant. Endocrinology 1994;135:564–568.

    Google Scholar 

  46. Bradley DJ, Towle HC, Young WSIII. Spatial and termporal expression of α-and β-thyroid hormone receptor mRNAs, including the β2-subtype, in the developing mammalian nervous system. J Neurosci 1992;12:2288–2302.

    Google Scholar 

  47. Rusch A, Erway LC, Oliver D, Vennstrom B, Forrest D. Thyroid hormone receptor b-dependent expression of a potassium conductance in inner hair cells at the onset of hearing. Proc Natl Acad Sci USA 1998;95:15758–15762.

    Google Scholar 

  48. Weiss RE, Refetoff S. Effect of thyroid hormone on growth: lessons from the syndrome of resistance to thyroid hormone. Endocrinol Metab Clin N Amer 1996;25:719–730.

    Google Scholar 

  49. Williams GR, Bland R, Sheppard MC. Characterization of thyroid hormone (T3) receptors in three osteosarcoma cell lines of distinct osteoblast phenotype: interactions among T3, Vitamin D3, and retinoid signaling. Endocrinology 1994;135: 2375–2385.

    Google Scholar 

  50. Gouveia CHA, Jorgetti V, Bianco AC. Effect of thyroid hormone administration and estrogen deficiency on bone mass of female rats. J Bone Miner Res 1997;12:2098–2107.

    Google Scholar 

  51. Ojamaa K, Kennessey A, Carmen D, Shenoy R, Chowdhury D, Klein I. Thyroid hormone (T3) treatment following acute myocardial infarction in a rat model. 72nd Annual Meeting of the American Thyroid Association, Palm Beach, FL. 1999;A236 (Abstract).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brent, G.A. Tissue-Specific Actions of Thyroid Hormone: Insights From Animal Models. Rev Endocr Metab Disord 1, 27–33 (2000). https://doi.org/10.1023/A:1010056202122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010056202122

Navigation