Skip to main content
Log in

Why is Brain Size so Important:Design Problems and Solutions as Neocortex Gets Biggeror Smaller

Brain and Mind

Abstract

As bridges or brains become bigger or smaller, the changes pose problems of design thatneed to be solved. Larger brains could have larger or more neurons, or both. With largerneurons, it becomes difficult to maintain conduction times over longer axons andelectrical cable properties over longer dendrites. With more neurons, it becomes difficultfor each neuron to maintain its proportion of connections with other neurons. Theseproblems are addressed by making brains more modular, thereby reducing the lengths ofmany connections, and by altering functions. Smaller brains may not have enoughneurons for all circuits, and they may lose modules and functions. Mammals with moreneocortex tend to have more cortical areas and more columns and types of columnswithin the larger areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Aboitiz, F., 1996: Does bigger mean better? Evolutionary determinants of brain size and structure, Brain, Behav. Evol. 47, 225–245.

    Google Scholar 

  • Allman, J. M., 1999: Evolving Brains, W.H. Freeman and Co., New York.

    Google Scholar 

  • Barlow, H. B., 1986: Why have multiple cortical areas? Vision Res. 26, 81–90.

    PubMed  Google Scholar 

  • Bekkers, J. M. and Stevens, C. F., 1970: Two different ways evolution makes neurons larger, Prog. Brain Res. 83, 37–45.

    Google Scholar 

  • Blackstad, T. W., 1975: Electron microscopy of experimental axon degeneration in photochemically modified Golgi preparations: a procedure for precise mapping of nervous connections, Brain Res. 95, 191–210.

    PubMed  Google Scholar 

  • Brodmann, K., 1909: Vergleichende Lokalisationslehre der Grosshirnrinde, Barth, Leipzig.

    Google Scholar 

  • Catania, K. C. and Kaas, J. H., 1996: The unusual nose and brain of the star-nosed mole, Bio Science 46, 578–586.

    Google Scholar 

  • Catania, K. C., Lyon, D. C., Mock, O. B. and Kaas, J. H., 1999: Cortical organization in shrews: Evidence from five species, J. Comp. Neurol. 410, 55–72.

    PubMed  Google Scholar 

  • Cherniak, C., 1990: The bounded brain: Toward a quantitative neuroanatomy, J. Cogn. Neurosci. 2, 58–68.

    Google Scholar 

  • Cooper, H. M., Herbin, M. and Nevo, E., 1993: Visual system of a naturally microphthalmic mammal: The blind mole rat Spalax ehvenbergi, J. Comp. Neurol. 328, 313–350.

    PubMed  Google Scholar 

  • Cowey, A., 1979: Cortical maps and visual perception, Q. J. Exp. Psych. U. 31, 1–17.

    Google Scholar 

  • Cusick, C. G. and Kaas, J. H., 1988: Surface view patterns of intrinsic and extrinsic cortical connections of area 17 in a prosimian primate, Brain Res. 458, 386–388.

    Google Scholar 

  • Deacon, T.W., 1990: Fallacies of progression in theories of brain-size, evolution, Int. J. Primatology 11, 193–236.

    Google Scholar 

  • Elston, G. N. and Rosa, M. G. P., 1998: Morphological variation of layer III pyramidal neurons in the occipitotemporal pathway of the macaque monkey visual cortex, Cerebral Cortex 8, 278–294.

    PubMed  Google Scholar 

  • Elston, G. N., Rosa, M. G. P. and Calford, M. P., 1996: Comparison of dendritic fields of layer III pyramidal neurons in striate and extrastriate visual areas of the marmoset: A lucifer yellow intracellular injection study, Cerebral Cortex 6, 807–813.

    PubMed  Google Scholar 

  • Finlay, B. L. and Darlington, R. B., 1995: Linked regularities in the development and evolution of mammalian brains, Science 268, 1578–1584.

    PubMed  Google Scholar 

  • Florence, S. L. and Kaas, J. H., 1992: Ocular dominance columns in area 17 of Old World macaque and talapoin monkeys: Complete reconstructions and quantitive analyses, Visual Neurosci. 8, 449–462.

    Google Scholar 

  • Gazzaniga, M. S., 1995: Principles of human brain organization derived from split-brain studies, Neuron 14, 217–228.

    PubMed  Google Scholar 

  • Gilbert, C. D. and Wiesel, T. N., 1989: Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex, J. Neurosci. 9, 2432–2442.

    PubMed  Google Scholar 

  • Haug, H., 1987: Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: A stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores and one elephant), Am. J. Anat. 180, 126–142.

    PubMed  Google Scholar 

  • Hofman, M. A., 1985: Size and shape of the cerebral cortex in mammals. I. The cortical surface, Brain Behav. Evol. 27, 28–40.

    PubMed  Google Scholar 

  • Hofman, M. A., 1989: On the evolution and geometry of the brain in mammals, Prog. Neurobiol. 32, 137–158.

    PubMed  Google Scholar 

  • Hubel, D. H. and Wiesel, T. N., 1974: Uniformity of monkey striate cortex: A parallel relationship between field sizes, scatter, and magnification factor, J. Comp. Neurol. 158, 295–306.

    PubMed  Google Scholar 

  • Iwaniuk, A. N., Pellis, S. M. and Whishaw, I. Q., 1999: Brain size is not correlated with forelimb dexterity in fissiped carnivores (Carnivora): A comparative test of the principle of proper mass, Brain Behav. Evol. 54, 167–180.

    PubMed  Google Scholar 

  • Jacob, F., 1977: Evolution and tinkering, Science 196, 1161–1166.

    PubMed  Google Scholar 

  • Jacobs, R. A. and Jordan, M. I., 1992: Computational consequences of a bias toward short connections, J. Cogn. Neurosci. 4, 323–336.

    Google Scholar 

  • Jerison, H. J., 1973: Evolution of the Brain and Intelligence, Academic Press, New York.

    Google Scholar 

  • Kaas, J. H., 1987: The organization and evolution of neocortex, in S. P. Wise (ed.), Higher Brain Functions, John Wiley & Sons, Inc., New York, pp. 347–378.

    Google Scholar 

  • Kaas, J. H., 1989: Why does the brain have so many visual areas? J. Cogn. Neurosci. 1, 121–135.

    Google Scholar 

  • Kaas, J. H., 1993a: The evolution of multiple areas and modules within neocortex, in P. Levitt and D. O'Leary (eds), Perspectives on Developmental Neurobiology 1, 101–107.

  • Kaas, J. H., 1993b: The functional organization of somatosensory cortex in primates, Ann. Anat. 175, 509–518.

    Google Scholar 

  • Kaas, J. H., 1995a: The evolution of isocortex, Brain Behav. Evol. 46, 187–196.

    PubMed  Google Scholar 

  • Kaas, J. H., 1995b: The organization of callosal connections in primates, in A. G. Reeves and D. W. Roberts (eds), Epilepsy and the Corpus Callosum. Advances in Behavioral Biology, Vol. 45, Plenum, New York, pp. 15–27.

    Google Scholar 

  • Kaas, J. H., 1997: Topographic maps are fundamental to sensory processing, Brain Res. Bull. 44, 107–112.

    PubMed  Google Scholar 

  • Kaas, J. H. and Hackett, T. A., 1998: Subdivisions of auditory cortex and levels of processing in primates, Audiol. Neurootol. 3, 73–85.

    PubMed  Google Scholar 

  • Krubitzer, L., 1995: The organization of neocortex in mammals: Are species differences really so different? TINS 18, 408–417.

    PubMed  Google Scholar 

  • Kruska, D., 1988: Mammalian domestication and its effect on brain structure and behavior, in H. J. Jerison and I. Jerison (eds), Intelligence and Evolutionary Biology, Springer, Berlin, pp. 211–250.

    Google Scholar 

  • Livingstone, M. S. and Hubel, D. H., 1988: Segregation of form, color, movement, and depth: Anatomy, physiology, and perception, Science 240, 740–749.

    Google Scholar 

  • Lund, J. S., Yoshioka, T. and Levitt, J. B., 1993: Comparison of intrinsic connectivity in different areas of macaque cerebral cortex, Cerebral Cortex 3, 148–162.

    PubMed  Google Scholar 

  • Lyon, D., Jain, N. and Kaas, J. H., 1998: Cortical connections of striate and extrastriate visual areas in the tree shrew, J. Comp. Neurol. 401, 109–128.

    PubMed  Google Scholar 

  • Mitchison, G., 1991: Neuronal branching patterns and the economy of cortical wiring, Proc. R. Soc. London B 245, 151–158.

    Google Scholar 

  • Mitchison, G., 1992: Axonal trees and cortical architecture, TINS 15, 122–126.

    PubMed  Google Scholar 

  • Northcutt, R. G. and Kaas, J. H., 1995: The emergence and evolution of mammalian neocortex, TINS 18, 373–379.

    PubMed  Google Scholar 

  • Prothero, J., 1997: Cortical scaling in mammals: A repeating units model, J. Brain Res. 38, 195–207.

    Google Scholar 

  • Rakic, P., 1988: Specification of cerebral cortical areas, Science 241, 170–176.

    Google Scholar 

  • Ringo, J. L., 1991: Neuronal interconnections as a function of brain size, Brain Behav. Evol. 38, 1–6.

    PubMed  Google Scholar 

  • Ringo, J. L., Doty, R. W., Demeter, S. and Simard, P. Y., 1994: Time is of the essence: A conjucture that hemispheric specialization arises from interhemispheric conduction delay, Cerebral Cortex 4, 331–343.

    PubMed  Google Scholar 

  • Rockel, A. J., Hiorns, R. W. and Powell, T. P. S., 1980: The basic uniformity in structure of the neocortex, Brain 103, 221–224.

    PubMed  Google Scholar 

  • Rockland, K. S. and Lund, J. S., 1983, Intrinsic laminar lattice connections in primate visual cortex, J. Comp. Neurol. 216, 303–318.

    PubMed  Google Scholar 

  • Schmidt-Nielson, K., 1984: Scaling: Why is Animal Size so Important? Cambridge Univ. Press, New York.

    Google Scholar 

  • Schüz. A. and Demianenko, G. P., 1995: Constancy and variability in cortical structure. A study in synapses and dendritic spines in hedgehog and monkey, J. Brain Res. 36, 113–122.

    Google Scholar 

  • Skoglund, T. S., Pascher, R. and Berthold, C. H., 1996: Heterogeneity in the columnar number of neurons in different neocortical areas in the rat, Neurosci. Lett. 208, 97–100.

    PubMed  Google Scholar 

  • Stevens, C. F., 1989: How cortical interconnectedness varies with network size,Neural Computation 1, 473–479.

    Google Scholar 

  • Suga, N., 1978: Specialization of the auditory system for reception and processing of species specific sounds, Fed. Proc. Am. Soc. Exp. Biol. 37, 2342–2354.

    Google Scholar 

  • Tyler, C. J., Dunlop, S. A., Lund, R. D., Harman, A. M., Dann, J. F., Beazley, L. D. and Lund J. S., 1998: Anatomical comparison of the macaque and marsupial visual cortex: Common features that may reflect retention of essential cortical elements, J. Comp. Neurol. 400, 449–468.

    PubMed  Google Scholar 

  • Van Essen, D. C., 1997: A tension-based theory of morphogenesis and compact wiring in the central nervous system, Nature 385, 313–318.

    Google Scholar 

  • Wu, C. W-H., Bichot, N. P. and Kaas, J. H., 2000: Converging evidence from microstimulation, architecture, and connections for multiple motor areas in the frontal and cingulate cortex of prosimian primtes, J. Comp. Neurol., in press.

  • Young, M. P., Scannell, J. W. and Burns, G., 1995: The Analysis of Cortical Connectivity, Springer, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaas, J.H. Why is Brain Size so Important:Design Problems and Solutions as Neocortex Gets Biggeror Smaller. Brain and Mind 1, 7–23 (2000). https://doi.org/10.1023/A:1010028405318

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010028405318

Navigation