Skip to main content
Log in

Modelling of strongly nonlinear sinusoidal Bragg gratings by the Method of Single Expression

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The one-dimensional problem of plane EM wave interaction with strongly nonlinear sinusoidal Bragg gratings is exactly solved using the new Method of Single Expression (MSE). The basic point of the method is the presentation of the electrical field in the modulated medium (Bragg grating) in the form of a single expression, contrary to the traditional counter-propagating waves approach. The spectral characteristics of linear Bragg gratings of different length are presented. The influence of loss or gain on the spectral characteristics of Bragg gratings is considered. The electrical field amplitude distributions along a grating at the wavelengths corresponding to the minima and maxima of reflectivity in the vicinity of the Bragg resonance are illustrated. Bistable and multistable dependences of reflectivity on the incident electrical field amplitude are obtained for negative and positive nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baghdasaryan, H.V. Method of backward calculation. In Photonic Devices for Telecommunications (How to model and measure), ed. G. Guekos, 56–65, Springer-Verlag, 1999.

  • Baghdasaryan, H.V. and T.M. Knyazyan. Optical and Quantum Electronics, Special Issue on Optical waveguide theory and numerical modelling 31 1059, 1999.

    Google Scholar 

  • Baghdasaryan, H.V., T.M. Knyazan and S.I. Avagyan. In ICTON'99, 57–60, (Conference proceedings), Kielce, Poland, 1999.

  • Baghdasaryan, H.V., G.G. Karapetyan, S.I. Avagyan, T.M. Knyazyan and G.M. Haroutounyan. In 43rd International Scientific Colloquium, Technical University of Ilmenau, C1.3., 1998.

  • Baghdasaryan, H.V., G.G. Karapetyan, T.M. Knyazan, S.I. Avagyan and N.K. Uzunoglu. In COST 240 Workshop, SOA-based Components for Optical Networks, 18–1–18–3, Prague, 1997.

  • Born, M. and E. Wolf. Principles of Optics, MacMillan, New York, 1964.

    Google Scholar 

  • Brekhovskikh, L.M. Waves in Layered Media, Academic Press, New York, 1960.

    Google Scholar 

  • Erdogan, T. IEEE J. Lightwave Technol. 15 1277, 1997.

    Google Scholar 

  • Giles, C.R. IEEE J. Lightwave Technol. 15 1391, 1997.

    Google Scholar 

  • Guekos, G. (ed) Photonic Devices for Telecommunications (How to model and measure), Springer-Verlag, 1999.

  • Herbert, Ch.J. and M.S. Malcuit. Opt. Lett. 18 1783, 1993.

    Google Scholar 

  • Kogelnik, H. In Guided-Wave Optoelectronics, ed. T. Tamir, Springer-Verlag, New York, 1990.

    Google Scholar 

  • Kogelnik, H. Bell Syst. Tech. J. 48 2909, 1969.

    Google Scholar 

  • Ohlidal, I. J. Opt. Soc. Am. Ser. A. 4 459, 1988.

    Google Scholar 

  • Othonos, A. and K. Kalli. Fiber Bragg gratings. Fundamentals and applications in Telecommunications and Sensing, Artech House, Norwood, MA, USA, 1999.

    Google Scholar 

  • Peral, E. and J. Capmany. IEEE J. Lightwave Technol. 15 1295, 1997.

    Google Scholar 

  • Rouard, P. Ann. d. Physique 7 291, 1937.

    Google Scholar 

  • Russell, P.St.J. J. Modern Opt. 38 1599, 1991.

    Google Scholar 

  • Wait, J.R. Electromagnetic waves in stratified media, Pergamon Press, New York, 1962.

    Google Scholar 

  • Wang, Z., T. Durhuus, B. Mikkelsen and K.E. Stubkjaer. Appl. Phys. Lett. 64 (16) 2065, 1994.

    Google Scholar 

  • Weller-Brophy, L.A. and D.G. Hall. J. Opt. Soc. Amer. A-2 863, 1985.

    Google Scholar 

  • Winick, K.A. Appl. Opt. 31 757, 1992.

    Google Scholar 

  • Yamada, M. and K. Sakuda. Appl. Opt. 26 3474, 1987.

    Google Scholar 

  • Yariv, A. and P. Yeh. Optical waves in crystals, John Wiley & Sons, New York, 1984.

    Google Scholar 

  • Yariv, A. IEEE J Quantum Electron. QE-9 919, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baghdasaryan, H., Knyazyan, T. Modelling of strongly nonlinear sinusoidal Bragg gratings by the Method of Single Expression. Optical and Quantum Electronics 32, 869–883 (2000). https://doi.org/10.1023/A:1007026830915

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007026830915

Navigation