Skip to main content
Log in

ERN1, a novel ethylene-regulated nuclear protein of Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Employing differential display of mRNA to investigate the transcriptionally regulated part of the ethylene response pathway in etiolated seedlings of Arabidopsis thaliana, a novel ethylene-regulated nuclear-localized protein, designated ERN1, was identified. ERN1 is one of four genes whose differential expression was confirmed by RNA blot analysis. ERN1 is represented by a single-copy gene in the Arabidopsis genome. Its expression is suppressed by ethylene in wild-type Arabidopsis but not in the ethylene-insensitive etr1-1 mutant. To gain first insight into the biological role of ERN1, a promoter-β-glucuronidase (GUS) gene fusion was constructed and the expression in various organs from early to late developmental stages was examined. The analysis revealed spatial and temporal expression patterns that correlate with developmental processes known to be affected by ethylene. Evidence is given that the level of expression of ERN1 is regulated through the ethylene signal transduction pathway via CTR1 and EIN3, indicating that ERN1 acts downstream of EIN3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abeles, F.B., Morgan, P.W. and Saltveit, M.E. Jr. 1992. Ethylene in Plant Biology. Academic Press, San Diego, CA.

    Google Scholar 

  • Alonso, J.M., Hirayama, T., Roman, G., Nourizadeh, S. and Ecker, J. 1999. EIN2 a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284: 2148–2152.

    Google Scholar 

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    Google Scholar 

  • Bairoch, A. 1992. 'PROSITE': a dictionary of sites and patterns in proteins. Nucl. Acids Res. 20: 2013–2018.

    Google Scholar 

  • Barry, C.S., Blume, B., Bouzayen, M., Cooper, W., Hamilton, A.J. and Grierson, D. 1996. Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J. 9: 525–535.

    Google Scholar 

  • Bechtold, N., Ellis, J. and Pelletier, G. 1993. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Paris, Life Sci. 316: 1194–1199.

    Google Scholar 

  • Bleecker, A.B. and Schaller, G.E. 1996. The mechanism of ethylene perception. Plant Physiol. 111: 653–660.

    Google Scholar 

  • Bleecker, A.B., Estelle, M.A., Somerville, C. and Kende, H. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241: 1086–1089.

    Google Scholar 

  • Boulikas, T. 1993. Nuclear localization signals (NLS). Crit. Rev. Eucaryotic Gene Expr. 3: 193–227.

    Google Scholar 

  • Chang, C. 1996. The ethylene signal transduction pathway in Arabidopsis: an emerging paradigm? Trends Biochem. Sci. 21: 129–133.

    Google Scholar 

  • Chang, C., Kwok, S.F., Bleecker, A.B. and Meyerowitz, E.M. 1993. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262: 539–544.

    Google Scholar 

  • Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W. and Ecker, J.R. 1997. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ethylene-insensitive3 and related proteins. Cell 89: 1133–1144.

    Google Scholar 

  • Citovsky, V., Zupan, J., Warnick, D. and Zambyski, P. 1992. Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256: 1802–1805.

    Google Scholar 

  • Clark, K.L., Larsen, P.B., Xiaoxia, W. and Chang, C. 1998. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc. Natl. Acad. Sci. USA 95: 5401–5406.

    Google Scholar 

  • Cohen, P. 1992. Signal integration at the level of protein kinases, protein phosphatases and their substrates. Trends Biochem. Sci. 17: 408–413.

    Google Scholar 

  • D'Alessio, J.M., Bebee, R., Hartley, J.L., Noon, M.C. and Polayes, D. 1992. Lambda ZipLoxTM: automatic subcloning of cDNA. Focus 14: 76–79.

    Google Scholar 

  • Dellaporta, S.L., Wood, J. and Hicks, J.B. 1983. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1: 19–21.

    Google Scholar 

  • Ecker, J.R. 1995. The ethylene signal transduction pathway in plants. Science 268: 667–675.

    Google Scholar 

  • Fluhr, R. 1998. Ethylene perception: from two-component signal transducers to gene induction. Trends Plant Sci. 3: 141–146.

    Google Scholar 

  • Gamble, R.L., Coonfield, M.L. and Schaller, G.E. 1998. Histidine kinase activity of the ETR1 ethylene recteptor from Arabidopsis. Proc. Natl. Acad. Sci. USA 95: 7825–7829.

    Google Scholar 

  • Goff, S.A., Klein, T.L-M., Roth, B.A., Fromm, M.E., Cone, K.C., Radicella, J.P. and Chandler, V.L. 1990. Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J. 9: 2517–2522.

    Google Scholar 

  • Guzman, P. and Ecker, J.R. 1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2: 513–523.

    Google Scholar 

  • Haynes, S.R., Rebbert, M.L., Mozer, B.A., Forquignon, F. and Dawid, I.B. 1987. Pen repeat sequences are GGN clusters and encode a glycine-rich domain in a Drosophila cDNA homologous to the rat helix destabilizing protein. Proc. Natl. Acad. Sci. USA 84: 1819–1823.

    Google Scholar 

  • Henikoff, S. 1987. Unidirectional digestion with Exonuclease III in DNA sequence analysis. Meth. Enzymol. 155: 156–165.

    Google Scholar 

  • Hirayama, T., Kieber, J.J., Hirayama, N., Kogan, M., Guzman, P., Nourizadeh, S., Alonso, J.M., Dailey, W.P., Dancis, A. and Ecker, J.R. 1999. Responsive-to-antagonist1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signalling in Arabidopsis. Cell 97: 383–393.

    Google Scholar 

  • Hua, J., Chang, C., Sun, Q. and Meyerowitz, E.M. 1995. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269: 1712–1714.

    Google Scholar 

  • Hua, J. and Meyerowitz, E.M. 1998. Ethylene responses are negatively regulated a receptor gene family in Arabidopsis thaliana. Cell 94: 261–271.

    Google Scholar 

  • Hua, J., Sakai, H., Nourizadeh, S., Chen, Q.G., Bleecker, A.B., Ecker, J.R. and Meyerowitz, E.M. 1998. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10: 1321–1332.

    Google Scholar 

  • Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.

    Google Scholar 

  • Kalderon, D., Richardson, W.D., Markham, A.F. and Smith, A.E. 1984. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311: 33–38.

    Google Scholar 

  • Kende, H. 1993. Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 4: 283–307.

    Google Scholar 

  • Kieber, J.J. 1997. The ethylene signal transduction pathway in Arabidopsis. J. Exp. Bot. 48: 211–218.

    Google Scholar 

  • Kieber, J.J., Rothenberg, M., Roman, G., Feldmann, K.A. and Ecker, J.R. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72: 427–441.

    Google Scholar 

  • Klein, T.M., Wolf, E.D., Wu, R. and Sanford, J.C. 1987. Highvelocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 70–73.

    Google Scholar 

  • Koncz, C. and Schell, J. 1986. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204: 383–396.

    Google Scholar 

  • Liang, P. and Pardee, A.B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–971.

    Google Scholar 

  • Metz, A.M., Timmer, R.T. and Browning, K.S. 1992. Sequences for two cDNAs encoding Arabidopsis thaliana eukaryotic protein synthesis initiation factor 4A. Gene 120: 313–314.

    Google Scholar 

  • Mitchell, P.J. and Tijan, R. 1989. Transcriptional regulation in mammalian cells by sequence specific DNA binding proteins. Science 245: 371–378.

    Google Scholar 

  • Murashige, T. and Skoog, T. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473–497.

    Google Scholar 

  • Neljubow, D. 1901. Ñber die horizontale Nutation der Stengel von Pisum sativum und einiger Anderer. Pflanzen Beih. Bot. Zentralbl. 10: 128–139.

    Google Scholar 

  • Newman, T., de Bruijn, F., Green, P., Keegstra, K., Kende, H., McIntosh, L., Ohlrogge, J., Raikhel, N., Somerville, S., Thomashew, M., Retzel, E. and Somerville, C. 1994. Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant. Physiol. 106: 1241–1255.

    Google Scholar 

  • Pearson, W.R. 1991. Identifying distantly related protein sequences. Curr. Opin. Struct. Biol. 1: 321–326.

    Google Scholar 

  • Powers, M.A. and Forbes, D.J. 1994. Cytosolic factors in nuclear transport: what's importin. Cell 46: 931–934.

    Google Scholar 

  • Raikhel, N. 1992. Nuclear targeting in plants. Plant Physiol. 100: 1627–1632.

    Google Scholar 

  • Sakai, H., Hua, J. Chen, Q.G., Chang, C., Medrano, L.J., Bleecker, A.B. and Meyerowitz, E.M. 1998. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 95: 5812–5817.

    Google Scholar 

  • Sanger, F., Nicklen, S. and Coulsen, A.R. 1977. DNA sequencing with terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Google Scholar 

  • Schaller, G.E. and Bleecker, A.B. 1995. Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 27: 1809–1811.

    Google Scholar 

  • Solano, R., Stepanova, A., Chao, Q. and Ecker, J.R. 1998. Nuclear events in ethylene signaling: a transcriptional cascade mediated by Ethylene-Insensitive 3 and Ethylene-Response Factor1. Genes Dev. 12: 3703–3714.

    Google Scholar 

  • Trentmann, S.M., van der Knaap, E. and Kende, H. 1995. Alternatives to 35S as a label for the differential display of eukaryotic mRNA. Science 267:1186–1187.

    Google Scholar 

  • Varagona, M.J., Schmidt, R.J. and Raikhel, N.V. 1992. Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein opaque-2. Plant Cell 4: 1213–1227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trentmann, S.M. ERN1, a novel ethylene-regulated nuclear protein of Arabidopsis. Plant Mol Biol 44, 11–25 (2000). https://doi.org/10.1023/A:1006438432198

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006438432198

Navigation