Skip to main content
Log in

Oncolytic Viruses

  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

Viruses capable of inducing lysis of malignant cells through theirreplication process are known as ``oncolytic'' viruses. Clinicaltrials in oncology have been performed with oncolytic viruses fornearly fifty years. Both systemic and intratumoral routes ofadministration have been explored. Toxicity has generally beenlimited to injection site pain, transient fever and tumor necrosis.Responses with early crude materials were usually short induration; however, recent trials with gene attenuated virusessuggest more prolonged duration to responses observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niemialtowski MG, Toka FN, Malicka E Gierynska M, Spohr de Faundez I, Schollenberger A: Controlling orthodox virus infections – 200 years after Jenner's revolutionary immunization. Archivum Immunologiae et Therapiae Experimentalis 44: 373–378, 1996

    Google Scholar 

  2. Ellner PD: Smallpox: Gone but not forgotten. Inf26(5): 283–269, 1998

    Google Scholar 

  3. Hansen RM, Libnoch JA: Remission of chronic lymphocytic leukemia after smallpox vaccination. Arch Intern Med 138: 1137–1138, 1978

    Google Scholar 

  4. Bousser J, Zittoun R: Remission spontanee prolongee D-une leucemie lymphoide chromique. Nouv Rev Fr Hematol 5: 498–501, 1965

    Google Scholar 

  5. Vladimirskaia EB: A case of prolonged spontaneous remission in a patient with chronic lymphocytic leukemia. Probl Gematol Pereliv Krovi 7: 51–54, 1962

    Google Scholar 

  6. Weintraub LR: Lymphosarcoma: Remission associated with viral hepatitis. JAMA 24: 1590–1591, 1969

    Google Scholar 

  7. Sinkovics JG: Oncolytic viruses and viral oncolysates. Ann Immun Hungaricae 26: 271–290, 1986

    Google Scholar 

  8. Dock G: Influence of complicating diseases upon leukaemia. Am J Med Sci 127: 563–592, 1904

    Google Scholar 

  9. Bierman HR, Hammon WMcD, Eddie BU, Meyer KF, Shimkin MB: The effect of viruses and bacterial infections on neoplastic diseases. Cancer Res 1O(abstr): 203–204, 1950

    Google Scholar 

  10. Bluming AZ, Ziegler JL: Regression of Burkitt's lymphoma in association with measles infection. Lancet II: 105–106,1971

    Google Scholar 

  11. Taqi AM, Abdurraham MB, Yabubu AM, Fleming AF: Regression of Hodgkin's disease after measles. Lancet I: 1112,1981

    Google Scholar 

  12. Hernadez A: Observacion de un case de enfermedad de Hodgkin, con regresion de los sintomas e infartos ganglionares, post-sarampion. Rev Med Cubana 60: 120–125,1949

    Google Scholar 

  13. Bierman HR, Crile DM, Dod KS: Remissions in leukemia of childhood following acute infectious disease; staphylococcus and streptococcus, varicella, and feline panleukopenia.Cancer 6: 591–605, 1953

    Google Scholar 

  14. Pelner L, Fowler GA, Nauts HC: Effects of concurrent infections and their toxins on the course of leukaemia. Acta Med Scand 338(suppl): 1–47, 1958

    Google Scholar 

  15. London RE:Multiple myeloma: report of a case showing unusual remission lasting two years following severe hepatitis. Ann Intern Med 43: 191–201, 1955

    Google Scholar 

  16. De Pace NG: Ginnecologia 9: 82, 1912

    Google Scholar 

  17. Pack GT: Note of the experimental use of rabies vaccine for melanomatosis. Arch Dermatol and Syphilol 62: 694–695,1950

    Google Scholar 

  18. Moore AE: Inhibition of growth of five transplantable mouse tumors by the virus of Russian far east encephalitis. Cancer 4: 375–382, 1951

    Google Scholar 

  19. Flanagan AD, Love R, Tesar W: Propagation of Newcastle disease virus in Ehrlich ascites cells in vitroand in vivo. Proc Soc Biol Med 90: 82–86, 1955

    Google Scholar 

  20. Prince AM, Ginsberg HS: Immunohistochemical studies on the interaction between Ehrlich ascites tumor cells and Newcastle disease virus. J Exp Med 105: 177-187, 1957

    Google Scholar 

  21. Sinkovics J: Studies on the biological characteristics of the Newcastle disease virus (NDV) adapted to the brain of newborn mice. Arch Ges Virusforsch 7: 403–411, 1957

    Google Scholar 

  22. Ackermann W, Kurtz H: A new host-virus system. Proc Soc Exp Biol Med 81: 421–423, 1957

    Google Scholar 

  23. Cassel WA: Multiplication of influenza virus in Ehrlich ascites carcinoma. Cancer Res 17: 618–622, 1957

    Google Scholar 

  24. Southam CM: Present status of oncolytic virus studies. Trans NY Acad Sci 22: 657–673, 1960

    Google Scholar 

  25. Asada T: Treatment of human cancer with mumps virus. Cancer 34(16): 1907–1928, 1974

    Google Scholar 

  26. Yamanishi E, Takahashi M, Kurimura T, Ueda S, Minekawa Y: Studies on live mumps virus vaccine – III. Evaluation of newly developed live mumps virus vaccine. Biken J 13: 157–161, 1970

    Google Scholar 

  27. Moore AE: Carcinolytic viruses. In: Biological Approaches to Cancer Chemotherapy. Harris RJC (ed), New York, Academic Press, pp 365–370, 1961

    Google Scholar 

  28. Sinkovics JG: In: Die Grundlagen der Virusforschung. Budapest, Ungarische Akademie der Wissenschaften, pp 98–103, 235–247, 1956

    Google Scholar 

  29. Harris JE, Sinkovics JG (eds): The Immunology of Malignant Disease. St. Louis, Mosby, pp 180–182, 464–467, 475–478, 1976

    Google Scholar 

  30. Hoster HA, Zanes RP, von Haam E: Studies in Hodgkin's syndrome. Cancer Res 9: 473–480, 1949

    Google Scholar 

  31. Lowe SW, Ruley HE: Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev 7: 535–545, 1993

    Google Scholar 

  32. Yu D, Hamodo Y, Zhang H, Nicolson GL, Hung M-C: Mechanisms of c-erbB2/neu oncogene-induced metastasis and repression of metastatic properties by adenovirus 5 E1A gene products. Oncogene 7: 2263–2270, 1992

    Google Scholar 

  33. Lorence RM, Rood PA, Kelley KW: Newcastle disease virus as an antineoplastic agent. Introduction of tumor necrosis factor-α and augmentation of its cytotoxicity. J Natl Cancer Inst 80: 1305–1312, 1988

    Google Scholar 

  34. Sinkovics JG: Project M27/gm23: Production of human interferon. Research Report, MD Anderson Hospital University of Texas Press, Austin, 332 pp, 1978

    Google Scholar 

  35. Sinkovics J, Horvath J: New development in the virus therapy of cancer: A historical review. Intervirol 36: 193–214, 1993

    Google Scholar 

  36. Marsch M, Helenius A: Virus entry into animal cells. Adv Virus Res 36: 107–151, 1989

    Google Scholar 

  37. Neda H, Wu CH, Wu GY: Chemical modification of an ecotropic murine leukemia virus results in redirection of its target cell specification. J Biol Chem 266: 14143–14146, 1991

    Google Scholar 

  38. Russell SJ, Brandenburger A, Fleming CL, Collins MKL, Rommelaere J: Transformatlon-dependent expression of interleukin genes delivered by a recombinant parvovirus. J Virol 66: 2821–2828, 1992

    Google Scholar 

  39. Friedman JM, Babiss LE, Clayton DF, Darnell Jr JE: Cellular promoters incorporated into the adenovirus genome: cell specificity of albumin and immunoglobulin expression. Mol Cell Biol 6: 3791–3797, 1986

    Google Scholar 

  40. Peplinski GR, Tsung K, Norton JA: Vaccinia virus for human gene therapy. Cancer Gene Ther 7(3): 575–588, 1998

    Google Scholar 

  41. North RJ: Down regulation of the anti-tumor immune response. Adv Cancer Res 45: 1–37, 1985

    Google Scholar 

  42. Scherer WF, Syverton JT, Gey GO: Studies on the propagation in vitroof poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exper Med 97: 695–709, 1953

    Google Scholar 

  43. Southam CM, Moore AE: Clinical studies of viruses as antineoplastic agents with particular reference to Egypt 101 virus. Cancer 5: 1025–1034, 1952

    Google Scholar 

  44. Smith RR, Huebner JR, Rowe WP, Schatten WE, Thomas LB: Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer 9: 1211–1218, 1956

    Google Scholar 

  45. Sinkovics JG: Oncogenes-antioncogenes and virus therapy of cancer. Anticancer Res 9: 1281–1290, 1989

    Google Scholar 

  46. Russell SJ: Replication vectors for gene therapy of cancer: Risks, limitations and prospects. Eur J Cancer 30A(8): 1165–1171, 1994

    Google Scholar 

  47. Asada T: A new attempt for cancer therapy. Jap Red Cross Med J 16: 9–19, 1963

    Google Scholar 

  48. Csatary LK, Eckhardt S, Bukosza I, Czegledy F, Fenyvesi C, Gergely P, Bodey B, Csatary CM: Attenuated veterinary virus vaccine for the treatment of cancer. Cancer Detect Prev 17(6): 619–627, 1993

    Google Scholar 

  49. Csatary LK, Gergely P: Virus vaccines for the treatment of cancer. Orv Hetil 131: 2585–2588, 1990

    Google Scholar 

  50. Shimizu Y, Hasumi K, Okudaira Y: Immunotherapy of advanced gynecologic cancer patients utilizing mumps virus. Cancer Detect Prev 12: 487–495, 1988

    Google Scholar 

  51. Okuno Y, Asada T, Yamanishi K: Studies on the use of mumps virus for treatment of human cancer. Biken J 21: 37–49, 1978

    Google Scholar 

  52. Cassel WA, Garrett RE: Newcastle disease virus as an antineoplastic agent. Cancer 18(7): 863–868, 1965

    Google Scholar 

  53. Reichard KW, Lorence RM, Cascino CJ: N-myc oncogene enhances the sensitivity of neuroblastoma to killing by Newcastle disease virus. Surg Forum 43: 603–606, 1992

    Google Scholar 

  54. Heicappell R, Schirmacher V, Von Hoegen P: Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells. I. Parameters for optional therapeutic effects. Int J Cancer 37: 569–577, 1986

    Google Scholar 

  55. Von Hoegen P, Weber E, Schirrmacher V: Modification of tumor cells by a low dose of Newcastle disease virus. Augmentation of the tumor-specific T-cell response in the absence of anti-viral response. Eur J Immunol 18: 1159–1166, 1988

    Google Scholar 

  56. Schirmacher V, Ahlert T, Heicappell R: Successful application of non-oncogenic virus for antimetastatic cancer immunotherapy. Cancer Rev 5: 19–32, 1986

    Google Scholar 

  57. Bar-Eli N, Giloh H, Schlesinger M, Zakay-Rones Z: Preferential cytotoxic effect of Newcastle disease virus on lymphoma cells. Cancer Res Clin Oncol 122: 409–415, 1996

    Google Scholar 

  58. Tzadok-David Y, Metzkin-Eizenberg M, Zakay-Rones Z: The effect of a mesogenic and a lentogenic Newcastle disease virus strain of Burkitt lymphoma Daudi cells. Cancer Res Clin Oncol 121: 169–174, 1995

    Google Scholar 

  59. Reichard KW, Lorence RM, Cascino CJ, Peeples ME, Walter RJ, Fernando MB, Reyes HM, Greager JA: Newcastle disease virus selectively kills human tumor cells. J Surg Res 52: 448–453, 1992

    Google Scholar 

  60. Sinkovics J, Howe CD: Super-infection of tumors with viruses. Experientia 25: 733–734, 1969

    Google Scholar 

  61. Cassel WA, Murray DR, Phillips HS: A Phase II study on the post-surgical management of Stage II malignant melanoma with a Newcastle disease virus oncoiysate. Cancer 52(5): 856–860, 1983

    Google Scholar 

  62. Cassel WA, Murray DR: A ten-year follow-up on stage II malignant melanoma patients treated post-surgically with Newcastle disease virus oncolysate. Med Oncol Tumor Pharmacother 9: 169–171, 1992

    Google Scholar 

  63. Cassell WA, Murray DR: Letter to the Editor. Nat Immun Cell Growth Regul 7: 351–352, 1988

    Google Scholar 

  64. Eilber FR, Morton DL, Holmes CE, Sparks FC, Ramming KP: Adjuvant immunotherapy with BCG in treatment of regional-lymph node metastases from malignant melanoma. N Engl J Med 294: 237–240, 1976

    Google Scholar 

  65. Gutterman JU, McBride C, Freireich EJ, Mavligit G, Frei E, Hersh EM: Active immunotherapy with BCG for recurrent malignant melanoma. Lancet 1: 1208–1212, 1973

    Google Scholar 

  66. Schlag P, Manasterski M, Gerneth T, Hohenberger P, Kueck M, Herfarth C, Liebrich W, Schirrmacher V: Active specific immunotherapy with Newcastle disease virus modified autologous tumor cells following resection of liver metastases in colorectal cancer. First evaluation of clinical response of a Phase II trial. Cancer Immunol Immunother 35: 325–330, 1992

    Google Scholar 

  67. Kirschner HH, Anton P, Atzpodien J: Adjuvant treatment of locally advanced renal cancer with autologous virusmodified tumor vaccines. World J Urol 13: 171–173, 1995

    Google Scholar 

  68. Haas C, Straus G, Moldenhauer G, lorio RM, Schirrmacher V: Bisopecific antibodies increase T-cell stimulatory capacity in vitroof human autologous virus-modified tumor vaccine. Clin Cancer Res 4: 721–730, 1998

    Google Scholar 

  69. Haas C, Schirrmacher V: Immunogenicity increase of autologous tumor cell vaccines by virus infection and attachment of bispecific antibodies. Cancer Immunol Immunother 43: 190–194, 1996

    Google Scholar 

  70. Berd D, Mastrangelo MJ: Active immunotherapy of human melanoma exploiting the immunopotentiating effects of cyclophosphamide. Cancer Inv 6: 337–349, 1988

    Google Scholar 

  71. Hoover SK, Barrett SK, Turk TMT, Lee T-C, Bear HD: Cyclophsphamide and abrogation of tumor-induced suppressor T-cell activity. Cancer Immunol Immunother 31: 121–127, 1990

    Google Scholar 

  72. Freedman RS, Edwards CL, Bowen JM, Lotzova E, Katz R, Lewis E, Atkison N, Carsetti R: Viral oncolysates in patients with advanced ovarian cancer. Gynecol Oncol 29: 337–347, 1988

    Google Scholar 

  73. Cassel WA, Garrett RE: Relationship between viral neurotropism and oncolysis. II. Study of Influenza virus. Cancer 20(3): 440–444, 1967

    Google Scholar 

  74. Boone CW: Augmented immunogenicity of tumor cell homogenates infected with influenza virus. Recent Results Cancer Res 47: 394–400, 1974

    Google Scholar 

  75. loannides CG, Platsoucas CD, Patenia R, Kim YP, Bowen JM, Morris M, Edwards G, Wharton JT, Freedman RS: Tcell functions in ovarian cancer patients treated with viral oncolysates: I. Increased helper activity to immunoglobulins production. Anticancer Res 10: 645–654, 1990

    Google Scholar 

  76. Goebel SJ, Johnson GP, Perkus ME: The complete DNA sequence of vaccinia virus. Virol 179: 247–266, 1990

    Google Scholar 

  77. Wallack MK, Steplewski Z, Koprowski H, Rosato E, George J, Hulihan B: A new approach in specific, active immunotherapy. Cancer 39: 560–564, 1977

    Google Scholar 

  78. Wallack MK, Sivanandham M, Balch CM, Urist MM, Bland KI, Murray D, Robinson WA, Flaherty L, Richards JM, Bartolucci AA, Rosen L: Surgical adjuvant active specific immunotherapy for patients with Stage III melanoma: The final analysis of data from a Phase III randomized doubleblind, multicenter vaccinia melanoma oncolysate trial. Am J Coil Surg 187(1): 69–79, 1998

    Google Scholar 

  79. Cassel WA, Garrett RE: Relationship between viral neurotropism and oncolysis. I. Study of vaccinia virus. Cancer 20(3): 433–439, 1967

    Google Scholar 

  80. Cassell WA, Murray DR, Torbin AH, Olkowski ZL, Moore ME: Viral oncolysate in the management of malignant melanoma. I. Preparation of the oncolysate and measurement of immunologic responses. Cancer 40(2): 672–679, 1977

    Google Scholar 

  81. Barnavon Y, Iwaki H, Bash JA, Brettschneider F, Hilsenbeck S, Darnell E, Wallack MK: Treatment of murine hepatic metastases with vaccinia colon oncolysate and IL-2. J Surg Res 45: 523, 1988

    Google Scholar 

  82. Barnavon Y, Iwaki H, Bash JA, Wallack MK: Vaccinia colon oncolysate immunotherapy for murine hepatic metastases can be modulated with low-dose interleukin-2. Am Surg 54: 696, 1988

    Google Scholar 

  83. Wu KS, Ueda S, Skaue Y: Prevention of syngeneic tumor growth in vaccinia virus-modulated tumor cells. Biken J 24: 153–158, 1981

    Google Scholar 

  84. Shimizu Y, Fujiwara H, Ueda S: The augmentation of tumorspecific immunity by virus help. II. Enhanced induction of cytotoxic T-lymphocyte and antibody to tumor antigens by vaccinia virus-reactive helper T-cells. Eur J Immunol 14: 839–843, 1984

    Google Scholar 

  85. Wallack MK, Bash JA, Leftheriotis E, Seigler H, Bland K, Wanebo H, Balch C, Bartolucci A: Positive relationship of clinical and serologic responses to vaccinia melanoma oncolysate. Arch Surg 122: 1460–1463, 1987

    Google Scholar 

  86. Wallack MK, Michaelides MC: Serologic responses to human melanoma line from patients with melanoma undergoing treatment with vaccinia melanoma oncolysates. Surg 96: 791–799, 1984

    Google Scholar 

  87. Wallack MK, Meyer M, Burgoin A: A preliminary trial of vaccinia oncolysates in the treatment of recurrent melanoma with serologic responses to the treatment. J Biol Response Mod 2: 586–596, 1983

    Google Scholar 

  88. Wallack MK, McNally KR, Leftheriotis E: A Southeastern Cancer Study Group Phase I/II trial with vaccinia melanoma oncolysates. Cancer 57: 649–655, 1986

    Google Scholar 

  89. Wallack MK, Scoggin SD, Sivanandham M: Active specific immunotherapy with vaccinia melanoma oncolysate. Mount Sinai J Med 59(3): 227–233, 1992

    Google Scholar 

  90. Scoggin SD, Sivanandham M, Sperry RG, Wallack MK: Active specific adjuvant immunotherapy with vaccinia melanoma oncolysate. Ann Plast Surg 28: 108–109, 1992

    Google Scholar 

  91. Stevens JG, Cook ML: Latent herpes simplex virus in spinal ganglia of mice. Science 173(999): 843–845, 1971

    Google Scholar 

  92. Palella TD, Silverman L, Schroll CT, Homa FL, Levine M, Kelley WN: Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells. Mol Cell Biol 8(1): 457–460, 1988

    Google Scholar 

  93. Geller Al, Breakefield WX: A defective HSV-1 vector expresses Escherichia coli beta-galactosidase in cultured peripheral neurons. Science 241: 1667–1669, 1988

    Google Scholar 

  94. Coen DM, Kosz-Vnenchak M, Jacobson JG, Leib DA, Bogard CL, Schaffer PA, Tyler KL, Knipe DM: Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigem inal ganglia but do not reactivate. Proc Natl Acad Sci USA 86: 4736–4740, 1989

    Google Scholar 

  95. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM: Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252: 854–856, 1991

    Google Scholar 

  96. Jamieson AT, Gentry GA, Subak-Sharpe JH: Biochemical studies on the herpes simplex virus-specified deoxypyrimidine kinase activity. J Gen Virol 24(3): 481–492, 1974

    Google Scholar 

  97. Field HJ, Wildy P: The pathogenicity of thymidine kinasedeficient, mutants of herpes simplex virus in mice. J Hyg (London) 81(2): 267–277, 1978

    Google Scholar 

  98. Jia WAG, McDermott M, Goldie J, Cynader M, Tan J, Tufaro F: Selective destruction of gliomas in immunocompetent rats by thymidine kinase-defective herpes simplex virus type 1. J Natl Cancer Inst 86(16): 1209–1215, 1994

    Google Scholar 

  99. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL: Attenuated multimutated herpes simplex virus-1 for the treatment of malignant gliomas. Nature Med 1(9): 938–943, 1995

    Google Scholar 

  100. Toda M, Rabkin SD, Martuza RL: Treatment of human breast cancer in a brain metastatic model by G207, a repllcationcompetent multimutated herpes simplex virus 1. Hum Gene Ther 9: 2177–2185, 1998

    Google Scholar 

  101. Randazzo B, Kesari Sa, Gesser RM, Alsop D, Ford JC, Brown SM, MacLean A, Graser NW: Treatment of experimental intracranial murine melanoma with a neuroattenuated herpes simplex virus 1 mutant. Virol 211: 94–101, 1995

    Google Scholar 

  102. Yazaki T, Manz HJ, Radbin SD, Martuza RL: Treatment of human malignant meningiomas by G207, a replicationcompetent multimutated herpes simplex virus 1. Cancer Res 55: 4752–4756, 1995

    Google Scholar 

  103. Toda M, Martuza RL, Kojima H, Rabkin SD: In situcancer vaccination: An IL-12 defective vector/replicationcompetent herpes simplex virus combination induces local and systemic antitumor activity. J Immunol 160: 4457–4464, 1998

    Google Scholar 

  104. Brandt CD, Kim HW, Vargosko AJ, Jeffries BC, Arrrobio JO, Rindge B, Parrott RH, Chanock RM: Infections in 18,000 infants and children in controlled study of respiration tract disease. Adenovirus pathogenicity in relation to serologic type and illness syndrome. Am J Epidem 90: 484–500, 1969

    Google Scholar 

  105. Hierholzer JC: Adenoviruses in the immunocompromised host. Clin Microbiol Rev 5: 262–274, 1992

    Google Scholar 

  106. Takafuji ET: Simultaneous administration of live, entericcoated adenovirus types 4, 7, and 21 vaccines: Safety and immunogenicity. J Infect Disease 140: 48–53, 1979

    Google Scholar 

  107. Green M, Wold WS, Mackey JK, Rigden P: Analysis of human tonsil and cancer DNAs and RNAs for DNA sequences in group C (serotypes 1, 2, 5 and 6) human adenoviruses. Proc Natl Acad Sci USA 76(12): 6606–6610, 1979

    Google Scholar 

  108. Lesoon-Wood LA, Kim WH, Kleinman HK: Systemic gene therapy with p53 reduces growth and metastases of a malignant human breast cancer in nude mice. Human Gene Ther 6: 395–405, 1995

    Google Scholar 

  109. Zhang W, Alemany R, Wang J: Safety evaluation of AdCMVp53 in vitroand in vivo. Human Gene Ther 6: 155–164, 1995

    Google Scholar 

  110. Nielsen LL, Dell J, Maxwell E: Efficacy of p53 adenovirusmediated gene therapy against human breast cancer xenografts. Cancer Gene Ther 4(2): 129–138, 1997

    Google Scholar 

  111. Simon RH, Engelhardt JF, Yang Y: Adenovirus-mediated transfer of the CFRT gene to lung of non-human primates: Toxicity study. Human Gene Ther 4: 771–780, 1993

    Google Scholar 

  112. Xu M, Kumar D, Srinivas S: Parenteral gene therapy with p53 inhibits human breast tumor in vivothrough a bystander mechanism without evidence of toxicity. Human Gene Ther 8: 177–185, 1998

    Google Scholar 

  113. Gomez-Foix AM, Coats WS, Baque S: Adenovirus-mediated transfer of the muscle glycogen phosphorylate gene into hepatocytes confers altered regulation of glycogen. J Biol Chem 267: 25129–25134, 1992

    Google Scholar 

  114. Le Gal La Salle G, Robert JJ, Bernard S: An adenovirus vector for gene transfer into neurons and glia in the brain. Science 259: 988–990, 1993

    Google Scholar 

  115. Tursz T, Le Cesne A, Baldeyrou P: Phase I study of a recombinant adenovirus-mediated gene transfer in lung cancer patients. J Natl Cancer Inst 88: 1857–1863, 1996

    Google Scholar 

  116. Harvey BG, Worgall S, Ramirez M: Host responses to intradermal administration of a first generation replication eficient adenovirus vector to normal individuals. Am Soc Gene Ther (Abstr 167) 43a, 1998

  117. Lechner MS, Mack DH, Finicle AB, Crook T, Vousden KH, aimins LA: Human papilloma virus E6 proteins bind p53 in vivoand abrogate p53-mediated repression oftranscription. EMBOJ 11: 3045–3052, 1992

    Google Scholar 

  118. Gannon JV, Lane DP: p53 and DNA polymerase alpha compete for binding to SV40 T antigen. Nature 329: 456–458, 1987

    Google Scholar 

  119. Barker DD, Berk AJ.: Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virol 156: 107–121, 1987

    Google Scholar 

  120. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, Mc-Cormick F: An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274: 373–376, 1996

    Google Scholar 

  121. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH: ONYX-015, an E1B geneattenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 3(6): 639–645, 1997

    Google Scholar 

  122. Kenney S, Pagano JS: Viruses as oncolytic agents: A new age for “therapeutic” viruses? J Nat Cancer Inst 86: 1185–1186, 1994

    Google Scholar 

  123. Yang Y, Nunes FA, Berenscsi K, Furth EE, Gonczol E, Wilson JM: Cellular immunity to viral antigens limits Eldeleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 91(10): 4407–4411, 1994

    Google Scholar 

  124. Nemunaitis J: Phase II trials of intratumoral ONYX-015, and E1B 55-kDa gene-deleted adenovirus alone and in combination with Cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Cancer Gene Ther 5(6): S26 (Abstr 0–8), 1998

    Google Scholar 

  125. Kirn D, Nemunaitis J, Ganly M: A Phase II trial of intratumor injection with an E1B-deleted adenovirus, ONYX-015, in patients with recurrent refractory head and neck cancer. Proc ASCO 1: 391a (abstr 1509), 1998

    Google Scholar 

  126. Bensadoun RJ, Franquin JC, Benezery K, Ciais G, Aardieu C, Dejou J: Low energy He/Ne laser in the prevention of radiation induced mucositis: A multicenter Phase III double blind study of patients with head and neck cancer. Proc ASCO 18: 390a (abstr 1509), 1999

    Google Scholar 

  127. Bergsland E, Mani S, Kirn D: Intratumoral injection of ONYX-015 for gastrointestinal tumors metastatic to the liver: A Phase I trial. Proc ASCO 17: 211a (abstr 814), 1998

    Google Scholar 

  128. Mulvihill SJ, Warren RS, Fell S: A Phase I trial of intratumoral injection with and E1B-attenuated adenovirus, ONYX-015, into unresectable carcinomas of the exocrine pancreas. Proc ASCO 17: 211a (abstr 815), 1998.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemunaitis, J. Oncolytic Viruses. Invest New Drugs 17, 375–386 (1999). https://doi.org/10.1023/A:1006334404767

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006334404767

Navigation