Skip to main content
Log in

Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

To improve the digestibility of the forage crop alfalfa (Medicago sativa L.), cinnamyl alcohol dehydrogenase (CAD), which catalyses the last step in the biosynthesis of the lignin monomers, was down-regulated by using an antisense approach. A subset of six transgenic lines with reduced CAD activity and control lines were analysed when grown in the greenhouse and in the field. The down-regulation of the CAD enzyme was associated with a red coloration of the stem. The lignin quantity remained unchanged, but the lignin composition, as determined by thioacidolysis, was altered. The highest reduction of CAD activity was associated with a lower syringyl/guaiacyl (S/G) ratio and a lower S+G yield, mainly because of a decreased amount of S units. An increase in in situ disappearance of dry matter and of cell wall residue was detected in one of the transgenic lines grown in the greenhouse, and for two of the lines grown in the field the rate of disappearance of dry matter slightly improved. Furthermore, these two lines had a higher solubility in alkali as shown by the lower yield of saponified residue. This study opens perspectives for improving forage crop digestibility by the modulation of enzymes involved in lignin biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin DE, Chesson A: Lignification as the major factor limiting forage feeding value especially in warm conditions. In: Asso-ciation Franç aise pour la Production Fourragè re (ed) Proceed-ings 16th International Grassland Congress, pp. 1753–1760. Institut National de la Recherche Agronomique, Versailles (1989)

  2. Atanassova R, Favet N, Martz F, Chabbert B, Tollier MT, Monties B, Fritig B, Legrand M: Altered lignin composition in transgenic tobacco expressing O-methyltransferase sequences in sense and antisense orientation. Plant J 8: 465–477(1995).

    Google Scholar 

  3. Ballet N, Maillot MP, Besle JM, Demarquilly G: Relationship between cell wall susceptibility to alkali treatment of alfalfa and digestibility. Proc 18th International Grassland Congress: 1–4(1997).

  4. Barriè re Y, Argillier O, Chabbert B, Tollier MT, Monties B: Breeding silage maize with brown-midrib genes. Feeding value and biochemical characteristics. Agronomie 14: 15–25 (1994).

    Google Scholar 

  5. Baucher M, Chabbert B, Pilate G, Van Doorsselaere J, Tollier M-T, Petit-Conil M, Cornu D, Monties B, Van Montagu M, Inzé D, Jouanin L, Boerjan W: Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydro-genase in poplar (Populus tremula × P. alba). Plant Physiol 112: 1479–1490(1996).

    PubMed  Google Scholar 

  6. Bernard-Vailhé MA, Besle JM, Cornu A, Maillot MP: Com-position and biological degradability of lignin modified trans-genic plants. Ann Zootech (Supp. 44): 68 (1995).

    Google Scholar 

  7. Bernard-Vailhé M-A, Besle JM, Maillot MP, Cornu A, Halpin C, Knight M:Effect of down-regulation of cinnamyl alcohol dehydrogenase on cell wall composition and on degradability of tobacco. J Sci Food Agric 76: 505–514(1998).

    Google Scholar 

  8. Bernard-Vailhé M-A, Cornu A, Robert D, Maillot M-P, Besle J-M: Cell wall degradability of transgenic tobacco stems in relation to their chemical extraction and lignin quality. J Agric Food Chem 44: 1164–1169(1996).

    Google Scholar 

  9. Bernard-Vailhé MA, Migné C, Cornu A, Maillot MP, Grenet E, Besle TM, Atanassova R, Martz F, Legrand M: Effect of modification of the O-methyltransferase activity on cell wall composition, ultrastructure and degradability of transgenic tobacco. J Sci Food Agric 72: 385–392(1996).

    Google Scholar 

  10. Besle J-M, Jouany J-P, Cornu A: Transformation of structural phenylpropanoids during cell wall digestion. FEMS Microbiol Rev 16: 33–52(1995).

    Google Scholar 

  11. Besle JM, Lassalas B, Thivend P: Digestion des glucides cyto-plasmiques de la féverole par le veau préruminant (Digestion of field bean cytoplasmic carbohydrates by the preruminant calf). Reprod Nutr Dev 21: 629–649(1981).

    PubMed  Google Scholar 

  12. Blakeney AB, Harris PJ, Henry, RJ and Stone, BA: A simple and rapid preparation of alditol acetates for monosaccharides analysis. Carbohydr Res 113: 291–299(1983).

    Google Scholar 

  13. Bowler C, Slooten L, Vandenbranden S, De Rycke R, Bot-terman J, Sybesma C, Van Montagu M, Inzé D: Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10: 1723–1732 (1991).

    PubMed  Google Scholar 

  14. Bradford MM: A rapid and sensitive method for the quantita-tion of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254(1976).

    Article  PubMed  Google Scholar 

  15. Bucholtz DL, Cantrell RP, Axtell JD, Lechtenberg VL: Lignin biochemistry of normal and brown midrib mutant sorghum. J Agric Food Chem 28: 1239–1241(1980).

    Google Scholar 

  16. Campbell MM, Sederoff RR: Variation in lignin content and composition. Mechanisms of control and implications for the genetic improvement of plants. Plant Physiol 110: 3–13 (1996).

    PubMed  Google Scholar 

  17. Chabbert B, Tollier MT, Monties B: Lignin variability among different brown midrib sorghum lines. In: Proceedings 7th In-ternational Symposium on Wood and Pulping Chemistry, pp. 462–468. Beijng (1993).

  18. Cherney, JH, Axtell JD, Hassen MM, Anliker KS: Forage quality characterization of a chemically induced brown-midrib mutant in pearl millet. Crop Sci 28: 783–787(1988).

    Google Scholar 

  19. D'Halluin K, Botterman J, De Greef W: Engineering of herbicide-resistant alfalfa and evaluation under field condi-tions. Crop Sci 30: 866–871(1990).

    Google Scholar 

  20. Dellaporta SL, Wood J, Hicks JB: A plant DNA miniprepara-tion: version II. Plant Mol Biol Rep 1: 19–21(1983).

    Google Scholar 

  21. Demarquilly C, Chenost M: Etude de la digestibility des four-rages dans le rumen par la méthode des sachets nylon. Liaisons avec la valeur alimentaire. Ann Zootech 18: 419–436(1969).

    Google Scholar 

  22. Dwivedi UN, Campbell WH, Yu J, Datla RSS, Bugos RC, Chiang VL, Podila GK: Modification of lignin biosynthesis in transgenic Nicotiana through expression of an antisense O-methyltransferase gene from Populus. Plant Mol Biol 26: 61–71(1994).

    PubMed  Google Scholar 

  23. Effland MJ: Modified procedure to determine acid-insoluble lignin in wood and pulp. Tappi 60: 143–144(1977).

    Google Scholar 

  24. Goffner D, Joffroy I, Grima-Pettenati J, Halpin C, Knight ME, Schuch W, Boudet AM: Purification and characterization of isoforms of cinnamyl alcohol dehydrogenase from Eucalyptus xylem. Planta 138: 48–53(1992).

    Google Scholar 

  25. Halpin C, Knight ME, Foxon CA, Campbell MM, Boudet AM, Boon JJ, Chabbert B, Tollier M-T, Schuch W: Manipula-tion of lignin quality by downregulation of cinnamyl alcohol dehydrogenases. Plant J 6: 339–350(1994).

    Google Scholar 

  26. Hibino T, Takabe K, Kawazu T, Shibata D, Higuchi T: In-crease of cinnamaldehyde groups in lignin of transgenic to-bacco plants carrying an antisense gene for cinnamyl alcohol dehydrogenase. Biosci Biotech Biochem 59: 929–931(1995).

    Google Scholar 

  27. Higuchi T, Ito T, Umezawa T, Hibino T, Shibata D: Red-brown color of lignified tissues of transgenic plants with antisense CAD gene: wine-red lignin from coniferyl aldehyde. J Biotechnol 37: 151–158(1994).

    Google Scholar 

  28. Iiyama K, Wallis AFA: Determination of lignins in herbaceous plants by an improved acetyl bromide procedure. J Sci Food Agric 51: 145–161(1990).

    Google Scholar 

  29. Jarrige R: Analyse des constituents glucidiques des plantes fourragè res: I. Fractionnement des constituents de la mem-brane par les hydrolyses acides. Ann Biol Anim Biochem Biophys 1: 163–212(1961).

    Google Scholar 

  30. Jorgensen LR:Brown midrib in maizeand itslinkagerela-tions. J Am Soc Agron 23: 549–557(1931).

    Google Scholar 

  31. Jung HJG: Forage lignins and their effects on fiber digestibil-ity. Agron J 81: 33–38(1989).

    Google Scholar 

  32. Kuc J, Nelson OE: The abnormal lignins produced by the brown-midrib mutants of maize. Arch Biochem Biophys 105: 103–113(1964).

    PubMed  Google Scholar 

  33. Lapierre C, Rolando C, Monties B: Thioacidolysis of poplar lignins: identification of monomeric syringyl products and characterization of guaiacyl syringyl-lignin fractions. Holz-forschung 40: 113–118(1986).

    Google Scholar 

  34. Lewis NG, Yamamoto E: Lignin: occurrence, biogenesis, and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41: 455–496(1990).

    PubMed  Google Scholar 

  35. MacKay JJ, O'Malley DM, Presnell T, Booker FL, Campbell MM, Whetten RW, Sederoff RR: Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cin-namyl alcohol dehydrogenase. Proc Natl Acad Sci USA 94: 8255–8260(1997).

    PubMed  Google Scholar 

  36. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1982).

    Google Scholar 

  37. Michalet Doreau B: Influence de la nature de l'aliment sur l'importance des pertes en particules dans la mesure de la degradabilité in sacco de l'azote des aliments. Reprod Nutr Dev 151S–152S(1990).

  38. Minson DJ: Forage in Ruminant Nutrition. Academic Press, New York (1990).

    Google Scholar 

  39. Monties B: Lignins. In: Dey PM, Harborne JB (eds), Methods in Plant Biochemistry: Plant Phenolics, vol. 1, pp. 113–157. Academic Press, New York (1989).

    Google Scholar 

  40. Monties B: Recent advances on lignin inhomogeneity. In: Van Sumere CF, Lea PJ (eds) The Biochemistry of Plant Phenolics (Annual Proceedings of the Phytochemical Society of Europe, vol 25), pp. 161–181. Oxford University Press, Oxford (1985).

    Google Scholar 

  41. Morrison IM: Changes in the biodegradability of ryegrass and legume fibres by chemical and biological pretreatments. J Sci Food Agric 54: 521–533(1991).

    Google Scholar 

  42. Müsel G, Schindler T, Bergfeld R, Ruel K, Jacquet G, Lapierre C, Speth V, Schopfer P: Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles an-alyzed by chemical and immunological probes. Planta 201: 146–159(1997).

    Google Scholar 

  43. Ni W, Paiva NL, Dixon RA: Reduced lignin in transgenic plants containing a caffeic acid O-methyltransferase antisense gene. Transgen Res 3: 120–126(1994).

    Google Scholar 

  44. Pillonel C, Mulder MM, Boon JJ, Forster B, Binder A: In-volvement of cinnamyl-alcohol dehydrogenase in the control of lignin formation in Sorghum bicolor L. Moench. Planta 185: 538–544(1991).

    Google Scholar 

  45. Porter KS, Axtell JS, Lechtenberg VL, Colenbrander VF: Phenotype, fiber composition, and in vitro dry matter disap-pearance of chemically induced brown-midrib (bmr)mutants of sorghum. Crop Sci 18: 205–209(1978).

    Google Scholar 

  46. SAS: SAS User's Guide: Statistics, version 6, 1st ed. SAS Institute, Cary, NC (1989).

    Google Scholar 

  47. Stewart D, Yahiaoui N, McDougall GJ, Myton K, Marque C, Boudet AM, Haigh J: Fourier-transform infrared and Raman spectroscopic evidence for the incorporation of cinnamaldehy-des into the lignin of transgenic tobacco (Nicotiana tabacum L.) plants with reduced expression of cinnamyl alcohol dehy-drogenase. Planta 201: 311–318(1997).

    Google Scholar 

  48. Vallet C, Chabbert B, Czaninski Y, Monties B: Histochem-istry of lignin deposition during sclerenchyma differentiation in alfalfa stems. Ann Bot 78: 625–632(1996).

    Google Scholar 

  49. Van Doorsselaere J, Baucher M, Chognot E, Chabbert B, Tollier M-T, Petit-Conil M, Leplé J-C, Pilate G, Cornu D, Monties B, Van Montagu M, Inzé D, Boerjan W, Jouanin L: A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulic acid O-methyltransferase activity. Plant J 8: 855–864(1995).

    Google Scholar 

  50. Van Doorsselaere J, Baucher M, Feuillet C, Boudet AM, Van Montagu M, Inzé D: Isolation of cinnamyl alcohol dehydroge-nase cDNAs from two important economic species: alfalfa and poplar. Demonstration of a high homology of the gene within angiosperms. Plant Physiol Biochem 33: 105–109(1995).

    Google Scholar 

  51. Vance CP, Kirk TK, Sherwood RT: Lignification as a mecha-nism of disease resistance. Annu Rev Phytopath 18: 259–288 (1980).

    Google Scholar 

  52. Vignols F, Rigau J, Torres MA, Capellades, M, Puigdomè nech P: The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7: 407–416(1995).

    PubMed  Google Scholar 

  53. Wardrop AB: Lignification of plant cell wall. In: Timell TE (ed) Proceedings of the 8th Cellulose Conference (Ap-plied Polymer Symposia, vol 28), pp. 1041–1063. Wiley-Interscience, New York (1976).

    Google Scholar 

  54. Wyrambik D, Grisebach H: Purification and properties of isoenzymes of cinnamyl-alcohol dehydrogenase from soybean-cell-suspension cultures. Eur J Biochem 59: 9–15 (1975).

    PubMed  Google Scholar 

  55. Yahiaoui N, Marque C, Myton KE, Negrel J, Boudet AM: Impact of different levels of cinnamyl alcohol dehydroge-nase down-regulation on lignins of transgenic tobacco plants. Planta 204: 8–15(1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baucher, M., Bernard-vailhé, M.A., Chabbert, B. et al. Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Mol Biol 39, 437–447 (1999). https://doi.org/10.1023/A:1006182925584

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006182925584

Navigation