Skip to main content
Log in

Influences of Climatic Change on Some Ecological Processes of an Insect Outbreak System in Canada's Boreal Forests and the Implications for Biodiversity

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Insect outbreaks are a major disturbance factor in Canadian forests. If global warming occurs, the disturbance patterns caused by insects may change substantially, especially for those insects whose distributions depend largely on climate. In addition, the likelihood of wildfire often increases after insect attack, so the unpredictability of future insect disturbance patterns adds to the general uncertainty of fire regimes. The rates of processes fundamental to energy, nutrient, and biogeochemical cycling are also affected by insect disturbance, and through these effects, potential changes in disturbance patterns indirectly influence biodiversity. A process-level perspective is advanced to describe how the major insect outbreak system in Canadian forests, that of the spruce budworm (Choristoneura fumiferana Clem. [Lepidoptera: Tortricidae]), might react to global warming. The resulting scenarios highlight the possible importance of natural selection, extreme weather, phenological relationships, complex feedbacks, historical conditions, and threshold behavior. That global warming already seems to be affecting the lifecycles of some insects points to the timeliness of this discussion. Some implications of this process-level perspective for managing the effects of global warming on biodiversity are discussed. The value of process-level understanding and high-resolution, long-term monitoring in attacking such problems is emphasized. It is argued that a species-level, preservationist approach may have unwanted side-effects, be cost-ineffective, and ecologically unsustainable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert, P. J., Clearley C., Hanson F. and Parisella, S.: 1982, Feeding responses of eastern spruce budworm larvae to sucrose and other carbohydrates, J. Chem. Ecol. 8, 233–239.

    Google Scholar 

  • Antonovsky, M. Y., Fleming R. A., Kuznetsov Y. A. and Clark, W. C.: 1990, Forest-pest interaction dynamics: the simplest mathematical models, Theor. Popul. Biol. 37, 343–367.

    Google Scholar 

  • Ayres, M. P. and Scriber, J. M.: 1994, Local adaptation to regional climates in Papilio canadensis (Lepidoptera: Papilionidae), Ecological Monographs 64, 465–482.

    Google Scholar 

  • Blais, J. R.: 1981, Recurrence of spruce budworm outbreaks for the past two hundred years in western Québec, Forestry Chronicle 57, 273–275.

    Google Scholar 

  • Bryant, J. P., Chapin, F. S. III and Klein, D. R.: 1983, Carbon nutrient balance of boreal plants in relation to vertebrate herbivory, Oikos 40, 357–368.

    Google Scholar 

  • Cerezke, H. F. and Volney, W. J.A.: 1995, Forest Insect Pests in the Northwest Region, in: Armstrong, J. A. and Ives, W. G.H. (eds.), Forest insect pests in Canada, Canadian Forest Service, Ottawa, pp. 59–72.

    Google Scholar 

  • Davis, M. B.: 1981, Quaternary History and the Stability of Forest Communities, in: West, D. C., Shugart, H. H. and Botkin, D. B. (eds.), Forest Succession: Concepts and Applications, Springer, New York, pp. 132–153.

    Google Scholar 

  • Elias, S. A.: 1991, Insects and climate change, Bioscience 41, 552–559.

    Google Scholar 

  • Farrow, R. A.: 1991, Implications of potential global warming on agricultural pests in Australia, EPPO Bulletin 21, 683–696.

    Google Scholar 

  • Fleming, R. A.: 1996, A mechanistic perspective of possible influences of climate change on defoliating insects in North America's boreal forests, Silva Fennica 30, 281–294.

    Google Scholar 

  • Fleming, R. A. and Shoemaker, C. A. S.: 1992, Evaluating models for spruce budworm-forest management: Comparing output with regional field data, Ecological Applications 2, 460–477.

    Google Scholar 

  • Fleming, R. A. and Tatchell, G. M.: 1994, Long Term Trends in Aphid Flight Phenology Consistent with Global Warming: Methods and some preliminary results, in: Leather, S. R., Watt, A. D., Mills, N. J. and Walters, K. A. F. (eds.), Individuals, Populations and Patterns in Ecology, Intercept, Andover, Hants, UK, pp. 63–71.

    Google Scholar 

  • Fleming, R. A. and Volney, W. J. A.: 1995, Effects of climate change on insect defoliator population processes in Canada's boreal forest: some plausible scenarios, Water, Air, and Soil Pollution 82, 445–454.

    Google Scholar 

  • Hall, J. P. and Moody, B. H. (compilers): 1994, Forest Depletions Caused by Insects and Diseases in Canada 1982–1987, Information Report ST-X-8, Canadian Forest Service, Ottawa, 14 p.

    Google Scholar 

  • Hardy, Y. J., Lafond, A. and Hamel, L.: 1983, The epidemiology of the current spruce budworm outbreak in Quebec, Forest Science 29, 715–725.

    Google Scholar 

  • Harvey, G. T.: 1974, Nutritional studies of eastern spruce budworm (Lepidoptera: Tortricidae). I. Soluble sugars, Can. Ent. 106, 353–365.

    Google Scholar 

  • Harvey, G. T.: 1983a, A geographic cline in egg weights in Choristoneura fumiferana (Lepidoptera: Tortricidae) and its significance in population dynamics, Can. Ent. 115, 1103–1108.

    Google Scholar 

  • Harvey, G. T.: 1983b, Environmental and genetic effects on mean egg weight in spruce budworm (Lepidoptera: Tortricidae), Can. Ent. 115, 1109–1117.

    Google Scholar 

  • Harvey, G. T.: 1985, Egg weight as a factor in the overwintering survival of spruce budworm (Lepidoptera: Tortricidae) larvae, Can. Ent. 117, 1451–1461.

    Google Scholar 

  • Hassell, M. P., Godfray, H. C. J. and Comins, H. N.: 1993, Effects of Global Change on the Dynamics of Insect Host–parasitoid Interactions, in: Kareiva, P. M., Kingsolver, J. G., and Huey, R. B. (eds.), Biotic Interactions and Global Change, Sinauer Associates Inc., Sunderland, MA, pp. 402–423.

    Google Scholar 

  • Hengeveld, H.: 1990, Theories on Species Responses to Variable Climates, in: Boer, M. M. and de Groot, R. S. (eds.), Landscape-Ecological Impact of Climate Change, IOS Press, Amsterdam, pp. 274–289.

    Google Scholar 

  • Hengeveld, H.: 1995, Understanding Atmospheric Change: A Survey of the Background Science and Implications of Climate Change and Ozone Depletion – second edition, SOE Report 95–2, Atmospheric Environment Service, Environment Canada, Ottawa, 68 p.

    Google Scholar 

  • Holling, C. S.: 1973, Resilience and stability of ecological systems, Ann. Rev. Ecology and Systematics 4, 1–23.

    Google Scholar 

  • Holling, C. S.: 1992a, Cross–scale morphology, geometry, and dynamics of ecosystems, Ecological Monographs 62, 447–502.

    Google Scholar 

  • Holling, C. S.: 1992b, The Role of Forest Insects in Structuring the Boreal Landscape, in: Shugart, H. H., Leemans, R. and Bonan, G. B. (eds.), Analysis of the Global Boreal Forest, Cambridge University Press, Cambridge, U.K, 545 p.

    Google Scholar 

  • Holling, C. S., Schindler, D. W., Walker, B.W. and Roughgarden, J.: 1995, Biodiversity in the Functioning of Ecosystems: An Ecological Synthesis, in: Perrings, C., Maler, K., Folke, C., Holling, C. S. and Jansson, B. (eds.), Biodiversity Loss: Economic and Ecological Issues, Cambridge Univ. Press, Cambridge U.K., pp. 44–83.

    Google Scholar 

  • Hudes, E. S. and Shoemaker, C. A.: 1988, Inferential method for modeling insect phenology and its application to the spruce budworm (Lepidoptera: Tortricidae), Environ. Entomol. 17, 97–108.

    Google Scholar 

  • Huston, M. A.: 1994, Biological diversity: The coexistence of species on changing landscapes, Cambridge Univ. Press, Cambridge U.K., 681p.

    Google Scholar 

  • IPCC: 1996, Second Assessment Report, Intergovernmental Panel on Climate Change, 3 volumes, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Kingsolver, J. G.: 1989, Weather and the population dynamics of insects: integrating physiological and population ecology, Physiol. Zool. 62, 314–334.

    Google Scholar 

  • Korzukhin, M. D., Ter-Mikaelian, M. T. and Wagner, R. G.: 1996, Process versus empirical models: which approach for forest ecosystem management?, Can. J. For. Res. 26, 879–887.

    Google Scholar 

  • Langner, L. L. and Flather, C. H.: 1994, Biological Diversity: Status and Trends in the United States, USDA For. Serv., Gen. Tech. Rep., RM-244, 24 p.

  • Larsson, S.: 1989, Stressful times for the plant stress – insect performance hypothesis, Oikos 56, 277–283.

    Google Scholar 

  • Lautenschlager, R. A.: 1995, Biodiversity Conservation Research Needs (Obstacles to biodiversity research), Forest Research Information Paper No. 129, Ontario Forest Research Institute, Ontario Ministry of Natural Resources, Sault Ste. Marie, 25 p.

    Google Scholar 

  • Lautenschlager, R. A.: 1996, Identify the specifics: A biopolitical approach for establishing research priorities, J. For. 94, 31–34.

    Google Scholar 

  • Lucuik, G. S.: 1984, Effect of climatic factors on post-diapause emergence and survival of spruce budworm (Choristoneura fumiferana) larvae (Lepidoptera: Tortricidae), Can. Ent. 116, 1077–1084.

    Google Scholar 

  • Lysyk, T. J.: 1989, Stochastic model of eastern spruce budworm (Lepidoptera: Tortricidae) phenology on white spruce and balsam fir, J. Econ. Entomol. 82, 1161–1168.

    Google Scholar 

  • MacLean, D. A.: 1985, Effects of Spruce Budworm Outbreaks on Forest Growth and Yield, in: Sanders, C. J., Stark, R. W., Mullins, E. J. and Murphy, J. (eds.), Recent Advances in Spruce Budworm Research, Canadian Forest Service, Ottawa, pp. 148–174.

    Google Scholar 

  • Mattson, W. J. and Haack, R. A.: 1987, The role of drought in outbreaks of plant-eating insects, BioScience 37, 110–118.

    Google Scholar 

  • Mattson, W. J., Slocum, S. S. and Koller, C. N.: 1983, Spruce Budworm Performance in Relation to Foliar Chemistry of its Host Plants, USDA For. Serv., Gen. Tech. Rep. NE85, 55–56.

  • Morris, R. F. (ed.): 1963, The dynamics of epidemic spruce budworm populations, Memoirs of the Entomological Society of Canada 31, 1–332.

    Google Scholar 

  • Nealis, V. G. and Fraser, S.: 1988, Rate of development, reproduction, and mass-rearing of Apanteles fumiferanae Vier. (Hymenoptera: Braconidae) under controlled conditions, Can. Ent. 120, 197–204.

    Google Scholar 

  • Niemelä, P. and Mattson, W. J.: 1996, Invasion of North American forests by European phytophagous insects: Legacy of the European crucible? Bioscience 46, 741–753.

    Google Scholar 

  • Noss, R. F.: 1990, Indicators for monitoring biodiversity: a hierarchical approach, Cons. Biol. 4, 355–364.

    Google Scholar 

  • Paine, R. T.: 1980, Food webs: linkage interaction strength and community infrastructure, J. Animal Ecol. 49, 667–685.

    Google Scholar 

  • Perry, D. A., Amaranthus, M. P., Borchers, J. G., Borchers, S. L. and Brainerd, R. E.: 1989, Bootstrapping in ecosystems, BioScience 39, 230–237.

    Google Scholar 

  • Perry, D. A., Borchers, J. G., Borchers, S. L. and Amaranthus, M. P.: 1990, Species migrations and ecosystem stability during climate change: the belowground connection, Cons. Biol. 4, 266–274.

    Google Scholar 

  • Perry, D. F. and Fleming, R. A.: 1988, The timing of Erynia radicans resting spore germination in relation to mycosis of Choristoneura fumiferana, Can. J. Bot. 67, 1657–1663.

    Google Scholar 

  • Porter, J. H., Parry, M. L. and Carter, T. R.: 1991, The potential effects of climatic change on agricultural insect pests, Agricultural and Forest Meteorology 57, 221–240.

    Google Scholar 

  • Price, P. W.: 1987, The Role of Natural Enemies in Insect Populations, in: Barbosa, P. and Schultz, J. (eds.), Insect Outbreaks, Academic Press, New York, pp. 241–268.

    Google Scholar 

  • Régnière, J. and You, M.: 1991, A simulation model of spruce budworm (Lepidoptera: Tortricidae) feeding on balsam fir and white spruce, Ecol. Modelling 54, 277–297.

    Google Scholar 

  • Rizzo, B. and Wicken, E.: 1992, Assessing the sensitivity of Canada's ecosystems to climatic change, Climate Change 21, 37–56.

    Google Scholar 

  • Royama, T.: 1992, Analytical Population Dynamics, Routledge, Chapman, and Hall Inc., New York, 371p.

    Google Scholar 

  • Sager, R. and Ryan, F.J.: 1961, Cell heredity, John Wiley and Sons Inc., New York, 411p.

    Google Scholar 

  • Sanders, C. J.: 1991, Biology of North American Spruce Budworms, in: van der Geest, L.P.S. and Evenhuis, H.H. (eds.), Tortricid Pests, their Biology, Natural Enemies and Control, Elsevier, Amsterdam, pp. 579–620.

    Google Scholar 

  • Sanders, C. J., Wallace, D. R. and Lucuik, G. S.: 1978, Flight activity of female eastern spruce budworm (Lepidoptera: Tortricidae) at constant temperatures in the laboratory, Can. Ent. 107, 1289–1299.

    Google Scholar 

  • Sargeant, N. E.: 1988, Redistribution of the Canadian boreal forest under a warmed climate, Climatol. Bull. 22, 23–34.

    Google Scholar 

  • Scott, J. M., Ables, E. D., Edwards, T. C. Jr, Eng, R. L., Gavin, T. A., Harris, L. D., Haufler, J. B., Healy, W. M., Knopf, F. L., Torgerson, O. and Weeks, H. P. Jr: 1995, Conservation of biological diversity: Perspectives and the future for the wildlife profession, Wildl. Soc. Bull. 23, 646–657.

    Google Scholar 

  • Sedinger, J. S. and Flint, P. L.: 1991, Growth rate is negatively correlated with hatch date in black brant, Ecology 72, 496–502.

    Google Scholar 

  • Shaw, G. G. and Little, C. H. A.: 1977, Natural variation in balsam fir foliar components of dietary importance to spruce budworm, Can. J. For. Res. 7, 47–53.

    Google Scholar 

  • Sims, R. A., Kershaw, H. M. and Wickware, G. M.: 1990, The Autecology of Major Tree Species in the North Central Region of Ontario, Ontario Ministry of Natural Resources, Northwestern Ontario Forest Technology Development Unit, OMNR Publication 5310. OMNR, Thunder Bay.

    Google Scholar 

  • Solomon, A. M. and Leemans, R.: 1990, Climatic Change and Landscape Ecological Response: Issues and Analysis, in: Boer, M.M. and de Groot, R.S. (eds.), Landscape-ecological Impact of Climatic Change, IOS Press, Amsterdam, pp. 293–316.

    Google Scholar 

  • Stedinger, J. R.: 1984, Aspruce budworm-forest model and its implications for suppression programs, Forest Science 30, 597–615.

    Google Scholar 

  • Stocks, B. J.: 1987, Fire potential in the spruce budworm-damaged forests of Ontario, Forestry Chronicle 63, 8–14.

    Google Scholar 

  • Sutherst, R. W., Maywald, G. F. and Skarratt, D. B.: 1995, Predicting Insect Distributions in a Changing Climate, in: Harrington, R. and Stork, N.E. (eds.), Insects in a Changing Environment, Academic Press, London, pp. 479–482.

    Google Scholar 

  • Szujecki, A.: 1987, Ecology of Forest Insects, Junk, Boston, 600 p.

    Google Scholar 

  • Taylor, F. and Spalding, J. B.: 1986, Geographical Patterns in the Photoperiodic Induction of Hibernal Diapause, in: Taylor, F. and Karban, R. (eds.), The Evolution of Insect Life Cycles, Springer-Verlag, New York, pp. 66–85.

    Google Scholar 

  • Thompson, I. D., Flannigan, M. D., Wotton, M. and Suffling, R.: 1998, The effects of climate change on landscape diversity: an example in Ontario forests, Envir. Mon. and Ass. 49, nos. 2–3, 213–233.

    Google Scholar 

  • VanWagner, C. E.: 1978, Age-class distribution and the forest fire cycle, Can. J. For. Res. 8, 220–227.

    Google Scholar 

  • Volney, W. J. A. and Cerezke, H. F.: 1992, The phenology of white spruce and the spruce budworm in northern Alberta, Can. J. For. Res. 22, 198–205.

    Google Scholar 

  • Wein, R. W.: 1990, The Importance of Wildfire to Climate Change – Hypotheses for the Taiga, in: Goldammer, J. G. and Jenkins, M. J. (eds.), Fire in Ecosystem Dynamics, Academic Press, The Hague, The Netherlands, pp. 185–190.

    Google Scholar 

  • Wellington, W. G.: 1948, The light reactions of the spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae), Can. Ent. 80, 56–82.

    Google Scholar 

  • White, T. C. R.: 1994, The Inadequate Environment: Nitrogen and the Abundance of Animals, Springer-Verlag, New York, 444 p.

    Google Scholar 

  • Wilson, G. F.: 1974, The effects of temperature and UV radiation on the infection of Choristoneura fumiferana and Malacosoma pluviale by a microsporidian parasite, Nosema (Perzia) fumiferanae (Thom.), Can. J. Zool. 52, 59–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleming, R.A., Candau, JN. Influences of Climatic Change on Some Ecological Processes of an Insect Outbreak System in Canada's Boreal Forests and the Implications for Biodiversity. Environ Monit Assess 49, 235–249 (1998). https://doi.org/10.1023/A:1005818108382

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005818108382

Navigation