Skip to main content
Log in

Upscaling in Global Change Research

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

This paper reviews the problems of upscaling that arise, in the context of global change research, in a wide variety of disciplines in the physical and social sciences. Upscaling is taken to mean the process of extrapolating from the site-specific scale at which observations are usually made or at which theoretical relationships apply, to the smallest scale that is resolved in global-scale models. Upscaling is pervasive in global change research; although in some cases it is done implicitly. A number of conceptually distinct, fundamental causes of upscaling problems are identified and are used to classify the upscaling problems that have been encountered in different disciplines. A variety of solutions to the upscaling problems have been developed in different disciplines, and these are compared here. Improper upscaling can dramatically after model simulation results in some cases. A consideration of scaling problems across diverse disciplines reveals a number of interesting conceptual similarities among disciplines whose practitioners might otherwise not communicate with each other. Upscaling raises a number of important questions concerning predictability and reliability in global change research, which are discussed here. There is a clear need for more research into the circumstances in which simple upscaling is not appropriate, and to develop or refine techniques for upscaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, A. and Schubert, W.H., 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I, J. Atmos. Sci. 31, 674–701.

    Google Scholar 

  • Alexander, G.D. and Cotton, W.R., 1998. The use of cloud-resolving simulations of mesoscale convective systems to build a mesoscale parameterization scheme, J. Atmos. Sci. 55, 2137–2161.

    Google Scholar 

  • Arola, A. and Lettenmaier, D.P., 1996. Effects of subgrid spatial heterogeneity on GCM-scale land surface energy and moisture fluxes, J. Clim. 9, 1339–1349.

    Google Scholar 

  • Avissar, R., 1995. Scaling of land-atmosphere interactions: An atmospheric modelling perspective, in J.D. Kalma and M. Sivapalan (eds.), Scale Issues in Hydrological Modelling, John Wiley, Chichester, 435–451.

    Google Scholar 

  • Avissar, R. and Liu, Y., 1996. Three-dimensional numerical study of shallow convective clouds and precipitation induced by land surface forcing, J. Geophys. Res. 101, 7499–7518.

    Google Scholar 

  • Avissar, R., and Pielke, R.A., 1989. A parameterization of heterogeneous land surface for atmospheric numerical models and its impact on regional meteorology, Mon. Weather Rev. 117, 2113–2136.

    Google Scholar 

  • Bass, B. and Brook, J.R., 1997. Downscaling procedures as a tool for integration of multiple air issues, Env. Monitoring and Assessment 46, 151–174.

    Google Scholar 

  • Beaver, R., 1993. Structural comparison of the models in EMF 12, Energy Policy 21, 238–248.

    Google Scholar 

  • Beljaars, A.C.M. and Holstag, A.A.M., 1991. Flux parameterization over land surfaces for atmospheric models, J. Appl. Meteor. 30, 327–341.

    Google Scholar 

  • Berry, J.A., Collatz, G.J., Denning, A.S., Colello, G.D., Fu, W., Grivet, C., Randall, D.A. and Sellers, P.J., 1997. SiB2, a model for simulation of biological processes within a climate model, in P.R. van Gardingen, G.M. Foody and P.J. Curran (eds.), Scaling-Up: From Cell to Landscape, Society for Experimental Biology Seminar Series 63, Cambridge University Press, Cambridge, 347–369.

    Google Scholar 

  • Binley, A. and Beven, K., 1989. A physically based model of heterogeneous hillslopes. 2. Effective hydraulic conductivities, Wat. Resourc. Res. 25, 1227–1233.

    Google Scholar 

  • Blöschl, G. and Sivapalan, M., 1995. Scale issues in hydrological modelling: A review, in J.D. Kalma and M. Sivapalan (eds.), Scale Issues in Hydrological Modelling, John Wiley, Chichester.

    Google Scholar 

  • Bonan, G.B., Pollard, D. and Thompson, S.L. 1993. Influence of subgrid-scale heterogeneity in leaf area index, stomatal resistance, and soil moisture on grid-scale land-atmosphere interactions, J. Clim. 6, 1882–1897.

    Google Scholar 

  • Bonan, G.B., 1995. Land-atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model, J. Geophys. Res. 100, 2817–2831.

    Google Scholar 

  • Bugmann, H. and Martin, P., 1995. How physics and biology matter in forest gap models, An editorial comment, Clim. Change 29, 251–257.

    Google Scholar 

  • Bugmann, H., Lindner, M., Lasch, P., Flechsig, M., Ebert, B. and Cramer, W., 1999. Scaling issues in forest succession modelling, Clim. Change (this issue).

  • Bush, E.J. and Harvey, L.D.D., 1997. Joint implementation and the ultimate objective of the United Nations Framework Convention on Climate Change, Glob. Env. Change 7, 265–285.

    Google Scholar 

  • Bromley, D.W. et al. (eds.), 1992. Making the Commons Work: Theory, Practice, and Policy, Institute for Contempory Studies Press, San Francisco, 339 pages.

    Google Scholar 

  • Bryan, F., 1987. Parameter sensitivity of primitive equation ocean general circulation models, J. Phys. Oceanogr. 17, 970–985.

    Google Scholar 

  • Calbo, J., Pan, W., Webster, M., Prinn, R.G. and McRae, G.J., 1998. Parameterization of urban subgrid scale processes in global atmospheric chemistry models, J. Geophys. Res. 103, 3437–3451.

    Google Scholar 

  • Chen, C. and Avissar, R., 1994. Impact of land-surface moisture variability on local shallow convective cumulus and precipitation in large-scale models, J. Appl. Meteorol. 33, 1382–1401.

    Google Scholar 

  • Chehbouni, A., Njoku, E.G., Lhomme, J.-P. and Kerr, Y.H. 1995. Approaches for averaging surface parameters and fluxes over heterogenous terrain, J. Clim. 8, 1386–1393.

    Google Scholar 

  • Chou, M.-D., Suarez, M.J., Ho, C.-H., Yan, M.M.-H., and Lee, K.-T., 1998. J. Clim. 11, 202–214.

    Google Scholar 

  • Claussen, M., 1991. Estimation of areally-averaged surface fluxes, Boundary Layer Met. 54, 387–410.

    Google Scholar 

  • Considine, G., Curry, J.A. and Wielicki, B., 1997. Modeling cloud fraction and horizontal variability in marine boundary layer clouds, J. Geophys. Res. 102, 13517–13525.

    Google Scholar 

  • Crawford, J.W., 1994. The relationship between structure and the hydraulic conductivity of soil, European J. Soil Sci., 45, 493–502.

    Google Scholar 

  • Crutzen, P.J., 1988. Variability in atmospheric-chemical systems, in T. Rosswall, R.G. Woodmansee and P.G. Risser (eds.), Scales and Global Change, SCOPE 35, John Wiley, Chichester, 81–108.

    Google Scholar 

  • DeAngelis, D.L., Gross, L.J., Huston, M.A., Wolff, W.F., Fleming, D.M., Comiskey, E.J. and Sylvester, S.M., 1998. Landscape modeling for everglades ecosystem restoration, Ecosytems 1, 64–75.

    Google Scholar 

  • Easterling, W.E., Weiss, A., Hays, C.J. and Mearns, L.O., 1998. Spatial scales of climatic information for simulating wheat and maize productivity: the case of the US Great Plains, Agric. Forest Met. 90, 51–63.

    Google Scholar 

  • Eltahir, E.A.B. and Bras, R.L., 1993. A description of rainfall interception over large areas, J. Clim. 6, 1002–1008.

    Google Scholar 

  • Entekhabi, D. and Eagleson, P.S., 1989. Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability, J. Clim. 2, 816–831.

    Google Scholar 

  • Field, C.B., Jackson, R.B. and Mooney, H.A., 1995. Stomatal responses to increased CO2: Implications from the plant to the global scale, Plant, Cell, Env. 18, 1214–1225.

    Google Scholar 

  • Ghan, S.J. and Easter, R.C., 1998. Comments on “A limited-area-model case study of the effects of sub-grid scale variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol”, Geophys. Res. Let. 25, 1039–1040.

    Google Scholar 

  • Giorgi, F., 1997a. An approach for the representation of surface heterogeneity in land surface models. Part I. Theoretical framework, Mon. Wea. Rev. 125, 1885–1899.

    Google Scholar 

  • Giorgi, F., 1997b. An approach for the representation of surface heterogeneity in land surface models. Part II. Validation and sensitivity experiments, Mon. Wea. Rev. 125, 1990–1919.

    Google Scholar 

  • Green, C., 1999. Potential scale-related problems in estimating the costs of CO2 mitigation policies, Clim. Change (this issue).

  • Gutmann, M., 1999. Scaling and demographic issues in global change research: The Great Plains, 1880–1990, Clim. Change (this issue).

  • Hardin, G., 1968. The tragedy of the commons, Science 162, 1243–1248.

    Google Scholar 

  • Harvey, L.D.D., 1988. Development of a sea ice model for use in zonally averaged energy balance climate models, J. Clim. 1, 1221–1238.

    Google Scholar 

  • Harvey, L.D.D. and Bush, E.J., 1997: Joint Implementation: An effective strategy for combatting global warming? Environment 39(8), 14–20, 36–44.

    Google Scholar 

  • Haywood, J.M., Ramaswamy, V. and Donner, L.J. 1997. A limited-area-model case study of the effects of sub-grid scale variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol, Geophys. Res. Let. 24, 143–146.

    Google Scholar 

  • Haywood, J.M., Ramaswamy, V. and Donner, L.J. 1997. Comments on “A limited-area-model case study of the effects of sub-grid scale variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol”, Reply, Geophys. Res. Let. 25, 1041.

    Google Scholar 

  • Hunt Jr., E.R., Piper, S.C., Nemani, R., Keeling, C.D., Otto, R.D. and Running, S.W., 1996. Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model, Glob. Biogeochem. Cycles 10, 431–456.

    Google Scholar 

  • Jackson, T., 1995. Joint implementation and cost-effectiveness under the framework convention on climate change, Energy Policy, 23, 117–130.

    Google Scholar 

  • Jarvis, P.G. and McNaughton, K.G., 1986. Stomatal control of transpiration: Scaling up from leaf to region, Adv. Ecol. Res. 15, 1–48.

    Google Scholar 

  • Johnson, K.D., Entekhabi, D. and Eagleson, P.S. (1993). The implementation and validation of improved land-surface hydrology in an atmospheric general circulation model, J. Clim. 6, 1009–1026.

    Google Scholar 

  • King, A.W., 1991. Translating models across scales in the landscape, in M.G. Turner and R.H. Gardner (eds.), Quantitative Methods in Landscape Ecology, Ecological Studies, Springer, New York, Vol. 82, 479–517.

    Google Scholar 

  • Knyazikhin, Y., Kranigk, J., Myneni, R.B., Panfyorov, O. and Gravenhorst, G., 1998. Influence of small-scale structure on radiative transfer and photosynthesis in vegetation canopies, J. Geophys. Res. 103, 6133–6144.

    Google Scholar 

  • Körner, Ch., 1996. The response of complex multispecies systems to elevated CO2, in B. Walker and W. Steffen (eds.), Global Change and Terrestrial Ecosystems, Cambridge University Press, Cambridge, 20–42.

    Google Scholar 

  • Kruijt, B., Ongeri, S. and Jarvis, P.G., 1997. Scaling of PAR absorption, photosynthesis and transpiration from leaves to canopy, in P.R. van Gardingen, G.M. Foody and P.J. Curran (eds.), Scaling-Up: From Cell to Landscape, Society for Experimental Biology Seminar Series 63, Cambridge University Press, Cambridge, 79–104.

    Google Scholar 

  • Levin, S.A., 1976. Population dynamic models in heterogeneous environments, Ann. Rev. Ecol. Syst. 7, 287–310.

    Google Scholar 

  • Levin, S.A., 1992. The problem of pattern and scale in ecology, Ecology 73, 1943–1967.

    Google Scholar 

  • Li, B. and Avissar, R., 1994. The impact of spatial variability of land-surface characteristics on land-surface heat fluxes, J. Clim. 7, 527–537.

    Google Scholar 

  • Liston, G.E., 1995. Local advection of momentum, heat, and moisture during the melt of patchy snow covers, J. App. Meteor. 34, 1705–1715.

    Google Scholar 

  • Loehle, C. and D. LeBlanc, 1996. Model-based assessments of climate change effects on forests: a critical review, Ecol. Modelling 90, 1–31.

    Google Scholar 

  • Lynn, B.H., Abramopolous, F., and Avissar, R., 1995. Using similarity theory to parameterize mesoscale heat fluxes generated by subgrid-scale landscape discontinuities in GCMs, J. Clim. 8, 932–951.

    Google Scholar 

  • Mason, P.J., 1988. The formation of areally-averaged roughness lengths, Quart. J. Roy. Met. Soc. 114, 399–420.

    Google Scholar 

  • Maykut, G.A., 1978. Energy exchange over young sea ice in the Central Arctic, J. Geophys. Res. 83, 3646–3658.

    Google Scholar 

  • McCay, B.J. and Acheson, J.M. (eds.), 1987, The Question of the Commons: The Culture and Ecology of Communal Resources, University of Arizona Press, Tucson, 439 pages.

    Google Scholar 

  • McKean, M.A., 1996. Common-property regimes as a solution to problems of scale and linkage, in S. Hanna, C. Folke, and K.-G. Mäler (eds.), Rights to Nature: Ecological, Economic, Cultural, and Political Principles of Institutions for the Environment, Island Press, Washington, 223–243.

    Google Scholar 

  • Meehl, G.A. and Washington, W.M., 1988. A comparison of soil-moisture sensitivity, J. Atmos. Sci. 45, 1476–1492.

    Google Scholar 

  • Menge, B.A. and Olson, A.M., 1990. Role of scale and environmental factors in regulation of community structure. Trends Ecol. Evol. 5, 52–57.

    Google Scholar 

  • Meyer, W.B., Gregory, D., Turner II, B.L. and McDowell, P.F., 1992. The local-global continuum, in R.F. Abler, M.G. Marcus, and J.M. Olson (eds.), Geography's Inner Worlds, Rutgers University Press, 255–279.

  • Miller, C. and Urban, D.L., 1999. A model of surface fire, climate and forest pattern in the Sierra Nevada, California, Ecol. Modelling 114, 113–135.

    Google Scholar 

  • Neilson, R.P. and Wullstein, L.H., 1983. Biogeography of two southwest American oaks in relations to atmospheric dynamics, J. Biogeogr. 10, 275–297.

    Google Scholar 

  • O'Brien, K.L., 1996. Tropical deforestation and climate change, Prog. Phys. Geogr. 20, 311–335.

    Google Scholar 

  • O'Brien, K.L., 1999. Upscaling tropical deforestation: Implications for climate change, Clim. Change (this issue).

  • O'Neill, R.V., 1988. Hierarchy theory and global change, in T. Rosswall, R.G. Woodmansee and P.G. Risser (eds.), Scales and Global Change, SCOPE 35, John Wiley, Chichester, 29–45.

    Google Scholar 

  • Overland, J.E., Walter, B.A., Curtin, T.B. and Turet, P., 1995. Hierarchy and sea ice mechanies: A case study from the Beaufort Sea, J. Geophys. Res. 100, 4559–4571.

    Google Scholar 

  • Pan, D.-M. and Randall, D.A., 1998. A cumulus parameterization with a prognostic closure, Q.J.R. Meteorol. Soc. 124, 949–981.

    Google Scholar 

  • Peterson, G., 1999. Scaling ecological dynamics: Self-organization, hierarchical structure, and resilience, Clim. Change (this issue).

  • Pickett, S.T.A. and Cadenasso, M.L., 1995. Landscape ecology: Spatial heterogeneity in ecological systems, Science 269, 331–334.

    Google Scholar 

  • Pielke, R.A. and Avissar, R., 1990. Influence of landscape structure on local and regional climate, Landscape Ecology 4, 133–155.

    Google Scholar 

  • Pielke, R.A., Rodriquez, J.H., Eastman, J.L., Walko, R.L. and Stocker, R.A., 1993. Influence of albedo variability in complex terrain on mesoscale systems, J. Clim. 6, 1798–1806.

    Google Scholar 

  • Pierce, L.L. and Running, S.W., 1995. The effects of aggregating sub-grid land surface variation on large-scale estimates of net primary production, Landscape Ecology 10, 239–253.

    Google Scholar 

  • Pitman, A.J., Henderson-Sellers, A. and Yang, Z-L., 1990. Sensitivity of regional climates to localized precipitation in global models, Nature 346, 734–737.

    Google Scholar 

  • Pitman, A.J., Yang, Z.-L. and Henderson-Sellers, A., 1993. Sub-grid scale precipitation in AGCMs: re-assessing the land surface sensitivity using a single column model, Clim. Dyn. 9, 33–41.

    Google Scholar 

  • Poppe, D., Koppmann, R. and Rudolph, J., 1998. Ozone formation in biomass burning plumes: Influence of atmospheric dilution, Geophysical Research Letters 25, 3823–3826.

    Google Scholar 

  • Ramaswamy, V. and Chen, C.-T., 1993. An investigation of the global solar radiative forcing due to changes in cloud liquid water path, J. Geophys. Res. 98, 16703–16712.

    Google Scholar 

  • Ramírez, J.A. and Senarath, S.U., 1998. A new parameterization of rainfall interception for global climate models: A statistical-dynamical models, J. Clim. (submitted).

  • Raupach, M.R. and Finnigan, J.J., 1995. Scale issues in boundary-layer meteorology: Surface energy balances in heterogeeous terrain, Hydrol. Processes 9, 589–612.

    Google Scholar 

  • Reynolds, J.F., Chen, J.L., Harley, P.C., Hilbert, D.W., Dougherty, R.L. and Tenhunen, J.D., 1992. Modeling the effects of elevated CO2 on plants: extrapolating leaf response to a canopy, Agric. For. Meteor. 61, 69–94.

    Google Scholar 

  • Reynolds, J.F., Hilbert, D.W. and Kemp, P.R., 1993. Scaling ecophysiology from the plant to the ecosystem: A conceptual framework, in J.R. Ehleringer and B. Christopher (eds.), Scaling Physiological Processes: Leaf to Globe, Academic Press, San Diego, 127–140.

    Google Scholar 

  • Root, T.L. and Schneider, S.H., 1995. Ecology and climate: Research strategies and implications, Science 269, 334–341.

    Google Scholar 

  • Rothman, D.S., 1999. Measuring environmental values and environmental impacts: Going from the local to the global, Clim. Change (this issue).

  • Rothschild, B.J. and Osborn, T.R., 1988. Small-scale turbulence and plankton contact rates, J. Plankton Res. 10, 465–474.

    Google Scholar 

  • Russell, G. and van Gardingen, P.R., 1997. Problems with using models to predict regional crop production, in J.R. Ehleringer and B. Christopher (eds.), Scaling Physiological Processes: Leaf to Globe, Academic Press, San Diego, 273–294.

    Google Scholar 

  • Schwartz, M.W., 1992. Modelling effects of habitat fragmentation on the ability of trees to respond to climatic warming, Biodiversity and Conservation 2, 51–61.

    Google Scholar 

  • Shugart, H.H. and Smith, T.M., 1996. A review of forest patch models and their application to global change research, Clim. Change 34, 131–153.

    Google Scholar 

  • Sellers, P.J., Berry, J.A., Collatz, G.J., Field, C.B. and Hall, F.G., 1992. Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme, Remote Sens. Environ. 42, 187–216.

    Google Scholar 

  • Sellers, P.J. et al., 1995. Effects of spatial variability in topography, vegetation cover and soil moisture on area-averaged surface fluxes: A case study using the FIEF 1989 data, J. Geophys. Res. 100, 25607–25629.

    Google Scholar 

  • Sellers, P.J. et al., 1996. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I. Model formulation, J. Clim. 9, 676–705.

    Google Scholar 

  • Senior, C.A. and Mitchell, J.F.B., 1996. Cloud feedbacks in the UKMO unified model, in H. Le Treut (ed.), Climate Sensitivity to Radiative Perturbations: Physical Mechanisms and Their Validation, Springer-Verlag, Berlin, 191–202.

    Google Scholar 

  • Seth, A., Giorgi, F. and Dickinson, R.E., 1994. Simulating fluxes from heterogenous land surfaces: Explicit subgrid method employing the biosphere-atmosphere transfer scheme (BATS), J. Geophys. Res. 99, 18651–18667.

    Google Scholar 

  • Sprinz, D.F., 1999. Problems of cross-level inference in political science, Clim. Change (this issue).

  • Stephens, G.L., 1987. On the effects of ice crystal porosity on the radiative characteristics of cirrus clouds, J. Geophys. Res. 92, 3979–3984.

    Google Scholar 

  • Taylor, C., 1995. Aggregation of wet and dry land surfaces in interception schemes for general circulation models, J. Clim. 8, 441–448.

    Google Scholar 

  • Taylor, K.E., and Ghan, S.J. 1992. An analysis of cloud liquid water feedback and global climate sensitivity in a general circulation model, J. Clim. 5, 907–919.

    Google Scholar 

  • Thompson, A.M., Huntley, M.A. and Stewart, R.W., 1990. Perturbations of tropospheric oxidants, 1985–2035 I. Calculations of ozone and OH in chemically coherent regions, J. Geophys. Res. 95, 9829–9844.

    Google Scholar 

  • Turner II, B.L., Kasperson, R.E., Meyer, W.B., Dow, K.M., Golding, D., Kasperson, J.X., Mitchell, R.C. and Ratick, S.J., 1990. Two types of global environmental change: Definitional and spatial-scale issues in their human dimensions, Glob. Env. Change 1, 14–22.

    Google Scholar 

  • Turner, M.G., 1989. Landscape ecology: The effect of pattern on process, Annu. Rev. Ecol. Syst. 20, 171–197.

    Google Scholar 

  • Turner, M.G., Gardner, R.H., Dale, V.H. and O.Neill, R.V., 1989. Predicting the spread of disturbance across heterogenous landscapes, Oikos 55, 121–129.

    Google Scholar 

  • Turner, M.G., Romme, W.H., Gardner, R.H., O'Neill, R.V. and Kratz, T.K., 1993. A revised concept of landscape equilibrium: Disturbance and stability on scaled landscapes, Landscape Ecology 8, 213–227.

    Google Scholar 

  • Wetzel, P.J. and Boone, A., 1995. A parameterization for land-atmosphere-cloud exchange (PLACE): Documentation and testing of a detailed process model of the partly cloudy boundary layer over heterogenous land, J. Clim. 8, 1810–1837.

    Google Scholar 

  • Wetzel, P.J. and Chang, Jy-T., 1987. Concerning the relationship between evapotranspiration and soil moisture, J. Clim. Appl. Meteor. 26, 18–27.

    Google Scholar 

  • Wood, E.F. and Lakshmi, V., 1993. Scaling water and energy fluxes in climate systems: Three land-atmospheric modeling experiments, J. Clim. 6, 839–857.

    Google Scholar 

  • Young, O.R., 1994. The problem of scale in human/environment relationships, J. Theor. Pol. 6, 429–447.

    Google Scholar 

  • Zeng, X. and Pielke, R.A., 1995. Landscape-induced atmospheric flow and its parameterization in large-scale numerical models, J. Clim. 8, 1156–1177.

    Google Scholar 

  • Zhang, C., Dazlich, D.A., Randall, D.A., Sellers, P.J. and Denning, A.S., 1996. Calculation of the global land surface energy, water and CO2 fluxes with an off-line version of SiB2, J. Geophys. Res. 101, 19061–19075.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, L.D. Upscaling in Global Change Research. Climatic Change 44, 225–263 (2000). https://doi.org/10.1023/A:1005543907412

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005543907412

Keywords

Navigation