Skip to main content
Log in

Viscous-type processes in the solar wind-magnetosphere interaction

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

A debate of long standing concerns the role viscous interactions play in magnetospheric dynamics. Is it minor or is it central to, e.g., drive the low latitude boundary layer on closed field lines and account for the substantial level of wave activity seen on the flanks? Newer data and theoretical considerations leave little doubt that viscous coupling is important. The Kelvin-Helmholtz instability is a major protagonist in fostering momentum transfer. Closer studies of the state of the flank magnetosphere will help to resolve the issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akasofu, S.-I., Hones, E. W., Jr., Bame, S. J., Asbridge, J. R. and Lui, A. T.: 1973, ‘Magnetotail and Boundary Layer Plasmas at a Geocentric Distance of 18 RE: Vela 5 and 6 Observations’, J. Geophys. Res. 78, 7257.

    Google Scholar 

  • Bame, S. J., Anderson, R. C., Asbridge, J. R., Baker, D. N., Feldman, W. C., Gosling, J. T., Hones, W., Jr., McComas, D. J. and Zwick, R.: 1983, ‘Plasma Regions in the Deep Magnetotail: ISEE-3’, Geophys. Res. Lett. 10, 912.

    Google Scholar 

  • Braginkii, S. I.: 1965, in M. A. Leontovich (ed.), ‘Transport Processes in a Plasma’, Revs. of Plasma Physics, Vol. 1, Consultants Bureau, New York, p. 205.

    Google Scholar 

  • Chen, S.-H. and Kivelson, M. G.: 1993, ‘Nonsinusoidal Waves at the Earth's Magnetopause’, Geophys. Res. Lett. 20, 2699.

    Google Scholar 

  • Chen, S.-H., Kivelson, M. G., Gosling, J. T., Walker, R. J. and Lazarus, A. J.: 1993, ‘Anomalous Aspects of Magnetosheath Flow and the Shape of Oscillations of the Magnetopause During an Interval of Strongly Northward Interplanetary Magnetic Field’, J. Geophys. Res. 98, 5727.

    Google Scholar 

  • Cowley, S. W. H.: 1984, ‘Solar Wind Control of Magnetospheric Convection’, Achievements of the International Magnetospheric Study (IMS), ESA SP-217, Paris, p. 483.

    Google Scholar 

  • Dunlop, M.W., Balogh, A., Baumjohann, W., Haerendel, G., Fornacon, K.-H., Georgescu, E., Nakamura, R. and Kokubun, S.: 1999, ‘Dynamics and Local Boundary Properties of the Dawn-Side magnetopause Under Conditions Observed by Equator-S’, Ann. Geophysicae 17, 1535.

    Google Scholar 

  • Eastman, T. E., Hones, E. W., Jr., Bame, S. J. and Asbridge, J. R.: 1976, ‘The Magnetospheric Boundary Layer: Site of Plasma, Momentum and Energy Transfer From the Magnetosheath into the Magnetosphere’, Geophys. Res. Lett. 3, 685.

    Google Scholar 

  • Engebretson, M., Glassmeier, K.-H., Stellmacher, M., Hughes, W. J. and Lühr, H.: 1998, ‘The Dependence of High-Latitude Pc 5Wave Power on SolarWind Velocity and on the Phase of High-Speed Solar Wind Streams’, J. Geophys. Res. 103, 171.

    Google Scholar 

  • Farrugia, C. J., Gratton, F. T., Bender, L., Quinn, J. M., Torbert, R. B., Erkaev, N. V. and Biernat, H. K.: 1998b, in J. Moen et al. (eds), ‘Recent Work on the Kelvin-Helmholtz Instability at the Dayside Magnetopause and Boundary Layer’, Polar Cap Boundary Phenomena, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Farrugia, C. J., Gratton, F. T., Bender, L., Biernat, H. K., Erkaev, N. V., Quinn, J. M., Torbert, R. B. and Dennisenko, V.: 1998a, ‘Charts of Joint Kelvin-Helmholtz and Rayleigh-Taylor Instabilities at the Dayside Magnetopause for Strongly Northward Interplanetary Magnetic Field’, J. Geophys. Res. 103, 6703.

    Google Scholar 

  • Farrugia, C. J., Gratton, F. T., Contin, J., Cocheci, C. C., Arnoldy, R. L., Ogilvie, K. W., Lepping, R. P., Zastenker, G. N., Nozdrachev, M. N., Fedorov, A., Sauvaud, J.-A., Steinberg, J. T. and Rostoker, G.: 2000, ‘Coordinated Wind, Interball/tail, and Ground Observations of Kelvin-Helmholtz Instability and Waves in the Near-Tail, Equatorial Magnetopause at Dusk: January 11, 1997’, J. Geophys. Res. 105, 7639.

    Google Scholar 

  • Hones, E. W., Jr., Asbridge, J. R., Bame, S. J., Montgomery, M. D., Singer, S. and Akasofu, S.-I.: 1972, ‘Measurements of Magnetotail Plasma Flow Made with Vela 4B’, J. Geophys. Res. 77, 5503.

    Google Scholar 

  • Kennel, C. F.: 1995, ‘Convection and Substorms’, International Series on Astron and Astrophysics, Oxford University Press, New York.

    Google Scholar 

  • Kivelson, M. G. and Chen, S.-H.: 1995, in P. Song, B. U. Ö. Sonnerup, and M. F. Thomsen (eds), ‘Surface Waves and instabilities and Their Possible Dynamical Consequences’, Physics of the Magnetopause, Geophys. Monogr. 90, AGU, Washington, D.C., p. 257.

    Google Scholar 

  • Lotko, W. and Sonnerup, B. U. Ö.: 1995, in P. Song, B. U. Ö. Sonnerup, and M. F. Thomsen (eds), ‘The Low-Latitude Boundary Layer on Closed Field Lines’, Physics of the Magnetopause, Geophys. Monogr. 90, AGU, Washington, D.C., p. 371.

    Google Scholar 

  • Miura, A.: 1984, ‘Anomalous Transport by Magnetohydrodynamic Kelvin-Helmholtz Instabilities in the Solar Wind-Magnetosphere Interaction’, J. Geophys. Res. 89, 801.

    Google Scholar 

  • Miura, A.: 1990, ‘Kelvin-Helmholtz Instability for Supersonic Shear Flow at the Magnetospheric Boundary’, Geophys. Res. Lett. 17, 749.

    Google Scholar 

  • Miura, A.: 1992, ‘Kelvin-Helmholtz Instability at the Magnetospheric Boundary: Dependence on the Magnetosheath Sonic Mach Number’, J. Geophys. Res. 97, 10,655.

    Google Scholar 

  • Paschmann, G.: 1997, ‘Observational Evidence for Transfer of Plasma Across the Magnetopausev’, Space Sci. Rev. 80, 217.

    Google Scholar 

  • Phan, T.-D., Larson, D., McFadden, J., Lin, R. P., Carlson, C., Moyer, M., Paulerena, K. I., Mc-Carthy, M., Parks, G. K., Réme, H., Sanderson, T. R. and Lepping, R. P.: 1997, ‘Low-Latitude Dusk Flank Magnetosheath, Magnetopause, and Boundary Layer for Low Magnetic Shear:Wind Observations’, J. Geophys. Res. 102, 19,883.

    Google Scholar 

  • Sandholt, P. E., Farrugia, C. J., Cowley, S. W. H., Denig, W. F., Lester, M., Moen, J. and Lybekk, B.: 1999, ‘Capture of Magnetosheath Plasma by the Magnetosphere During Northward IMF’, Geophys. Res. Lett. 26, 2833.

    Google Scholar 

  • Sckopke, N., Paschmann, G., Haerendel, G., Sonnerup, B.U.Ö., Bame, S. J., Forbes, T. G., Hones, Jr., E. W. and Russell, C. T.: 1981, ‘Structure of the Low Latitude Boundary Layer’, J. Geophys. Res. 86, 2099.

    Google Scholar 

  • Seon, J., Frank, L. A., Lazarus, A. J. and Lepping, R. P.: 1995, ‘Surface Waves on Tailward Flanks of the Earth's Magnetopause’, J. Geophys. Res. 100, 11,907.

    Google Scholar 

  • Song, P. and Russel, C. T.: 1992, ‘Model of the Formation of the Low-Latitude Boundary Layer for Strongly Northward Interplanetary Magnetic Field’, J. Geophys. Res. 97, 1411.

    Google Scholar 

  • Song, P., Holzer, T. E., Russell, C. T. and Wang, Z.: 1994, ‘Modeling the Low-Latitude Boundary Layer with Reconnection Entry’, Geophys. Res. Lett. 21, 625.

    Google Scholar 

  • Song, P., DeZeeuw, D. L., Gombosi, T. I., Groth, C. P. T. and Powell, K. G.: 1999, ‘A Numerical Study of Solar Wind-Magnetosphere Interaction for Northward Interplanetary Magnetic Field’, J. Geophys. Res. 104, 28361.

    Google Scholar 

  • Sonnerup, B. U. Ö.: 1980, ‘Theory of the Low-Latitude Boundary Layer’, J. Geophys. Res. 85, 1980.

    Google Scholar 

  • Treumann, R. A.: 1997, ‘Theory of Super-Diffusion for the Magnetopause’, Geophys. Res. Lett. 24, 1727.

    Google Scholar 

  • Treumann, R. A., LaBelle, J. and Bauer, T. M.: 1995, in P. Song, B. U. Ö. Sonnerup, and M. F. Thomsen (eds), ‘Diffusion at the Magnetopause: The Observational Viewpoint’, Physics of the Magnetopause, Geophys. Monogr. 90, AGU, Washington, D.C., p. 331.

    Google Scholar 

  • Winske, D., Thomas, V. A. and Omidi, N.: 1995, in P. Song, B. U. Ö Sonnerup, and M. F. Thomsen (eds), ‘Diffusion at the Magnetopause: A Theoretical Perspective’, Physics of the Magnetopause, Geophys. Monogr. 90, AGU, Washington, D.C., p. 321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrugia, C.J., Gratton, F.T. & Torbert, R.B. Viscous-type processes in the solar wind-magnetosphere interaction. Space Science Reviews 95, 443–456 (2001). https://doi.org/10.1023/A:1005288703357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005288703357

Keywords

Navigation