Skip to main content
Log in

Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The concept of critical nitrogen concentration(%N c) has been proposed as the minimum%N in shoots required to produce the maximum aerial biomassat a given time. Several authors have shown that%N c declines as a function of aerial biomassaccumulation (W) and the %N cW relationship has been proposed as a diagnostic tool of N statusin different crops, excluding maize. From data obtained in five nitrogenfertilisation experiments in irrigated maize crops, 26 critical data-pointswere selected with a precise statistical procedure. An allometric relationwas fitted and a critical %NW relationshipmodel is proposed in maize as:

If W < 1 t ha-1%N c = 3.40

If 1 t ha-1W ≤ 22 t ha-1%N c = 3.40(W)−0.37

The model is applicable to maize crop development between emergenceand silking + 25 days. The model was tested and validated with dataobtained in a network of 17 N fertilisation experiments conducted inFrance under contrasting pedoclimatic conditions. In only nineout of 280 data-points (3.2%), the plant N status was mispredictedwhen ±5% error around %N c wasallowed. A critical N uptake model (Nuc, kg Nha-1) is proposed as

Nuc = 34 (W)0.63

A comparison between Nuc and N uptake observedin N treatments giving the maximal grain yields has shown that maizecrops assimilate at least 30 kg N ha-1 in a storage N poolat the silking stage. The significance of the critical%NW and Nu−W relationships is discussed in relation to theoretical models proposed inwhole plant ecophysiology. Different relationships calculated betweenleaf area index and aerial biomass accumulation, and between N uptakeand leaf area were consistent with previous results for other crops.This strengthens the interest of the critical%NW relationship for use as diagnostictool of nitrogen status in maize crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ågren G I 1985 Theory for growth of plants derived from the nitrogen productivity concept. Physiol. Plant. 65, 17–28.

    Article  Google Scholar 

  • Ågren G I 1988 Ideal nutrient productivities and nutrient proportions in plant growth. Plant Cell Environ 11, 613–620.

    Article  Google Scholar 

  • Anten N P R, Schieving F and Werger M J A 1995 Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono-and dicotyledonous species. Oecologia 101, 504–513.

    Article  Google Scholar 

  • Boyer C D and Shannon J C 1986 Carbohydrate utilization in maize kernels. In: Regulation of Carbon and Nitrogen Reduction and Utilization in Maize. Eds J C Shannon, D P Knievel and C D Boyer. pp. 149–158. American Society of Plant Physiologists, The Pennsylvania State University.

  • Brisson N, Mary B, Ripoche D, Jeuffroy M H, Ruget F, Nicoullaud B, Gate P, Devienne-Baret F, Antonioletti R, Durr C, Richard G, Beaudoin N, Recous S, Tayot X, Plénet D, Cellier P, Machet J M, Meynard J M and Delécolle R 1998 STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 18, 311–346.

    Google Scholar 

  • Brown R H 1978 A difference in N use efficiency in C3 and C4 plants and its implications in adaptation and evolution. Crop Sci. 18, 93–98.

    Article  CAS  Google Scholar 

  • Caloin M and Yu O 1984 Analysis of the time course of change in nitrogen content in Dactylis glomerata L. using a model of plant growth. Ann. Bot. 54, 69–76.

    CAS  Google Scholar 

  • Cerrato M E and Blackmer A M 1990 Relationships between grain nitrogen concentrations and the nitrogen status of corn. Agron. J. 82, 744–749.

    Article  CAS  Google Scholar 

  • Charles-Edwards D A, Stutzel H, Ferraris R and Beech D F 1987 An analysis of spatial variation in the nitrogen content of leaves from different horizons within a canopy. Ann. Bot. 60, 421–426.

    Google Scholar 

  • Colnenne C, Meynard J M, Reau R, Justes E and Merrien A 1998 Determination of a critical nitrogen dilution curve for winter oilseed rape. Ann. Bot. 81, 311–317.

    Article  CAS  Google Scholar 

  • Crawford T W J, Rending V V and Broadbent F E 1982 Sources, fluxes and sinks of nitrogen during early reproductive growth of maize (Zea mays L.). Plant Physiol. 70, 1654–1660.

    PubMed  CAS  Google Scholar 

  • Field C 1983 Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia 56, 341–347.

    Article  Google Scholar 

  • Field C and Mooney H A 1983 The photosynthesis-nitrogen relationship in wild plants. In: On the Economy of Plant Form and Function. Ed. T J Givnish. pp 25–55. Cambridge University Press, Cambridge.

    Google Scholar 

  • Giauffret C, Bonhomme R, Dorvillez D and Derieux M 1991 Conversion of intercepted radiation into aerial dry biomass for three maize genotypes: influence of plant density. Maydica 36, 25–27.

    Google Scholar 

  • Greenwood D J, Lemaire G, Gosse G, Cruz P, Draycott A and Neeteson J J 1990 Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann. Bot. 66, 425–436.

    CAS  Google Scholar 

  • Greenwood D J, Gastal F, Lemaire G, Draycott A, Millard P and Neeteson J J 1991 Growth rate and % N of field grown crops: theory and experiments. Ann. Bot. 67, 181–190.

    CAS  Google Scholar 

  • Grindlay D J C, Sylvester-Bradley R and Scott R K 1993 Nitrogen uptake of young vegetative plants in relation to green area. J. Sci. Food Agric. 63, 116.

    Google Scholar 

  • Hardwick R C 1987 The nitrogen content of plants and the selfthinning rule of plant ecology: a test of the core-skin hypothesis. Ann. Bot. 60, 439–446.

    Google Scholar 

  • Hirose T and Werger M J A 1987 Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72, 520–526.

    Article  Google Scholar 

  • Ingestad T 1982 Relative addition rate and external concentration; driving variables used in plant nutrition research. Plant Cell Environ. 5, 443–453.

    Article  CAS  Google Scholar 

  • Jones J B 1967 Interpretation of plant analysis for several crops. In: Soil Testing and Plant Analysis. Eds Walsh and Beaton. pp 40–58. SSSA, Madison, Wisconsin.

    Google Scholar 

  • Justes E, Mary B, Meynard J M, Machet J M and Thelier-Huché L 1994 Determination of a critical nitrogen dilution curve for winter wheat crops. Ann. Bot. 74, 397–407.

    Article  CAS  Google Scholar 

  • Karlen D L, Sadler E J and Camp C R 1987 Dry matter, nitrogen, phosphorus and potassium accumulation rates by corn on Norfolk loamy sand. Agron. J. 79, 649–656.

    Article  Google Scholar 

  • Khamis S and Lamaze T 1990 Maximal biomass production can occur in corn (Zea mays) in the absence of NO3 accumulation in either leaves or roots. Physiol. Plant. 78, 388–394.

    Article  CAS  Google Scholar 

  • Landry J 1984 Accumulation des protéines dans le grain de maïs. In: Physiologie du Maïs. Ed. A Gallais. pp 287–302. INRA, Paris.

    Google Scholar 

  • Lemaire G and Denoix A 1987 Croissance estivale en matière sèche de peuplements de fétuque élevée (Festuca arundinacea Schreb.) et de dactyle (Dactylis glomerata L.) dans l'Ouest de la France. I. Etude en conditions de nutrition azotée et d'alimentation hydrique non limitantes. Agronomie 7, 373–380.

    Google Scholar 

  • Lemaire G and Gastal F 1997 N uptake and distribution in plant canopies. In: Diagnosis of the Nitrogen Status in Crops. Ed. G Lemaire. pp 3–43. Springer-Verlag, Berlin.

    Google Scholar 

  • Lemaire G and Millard P 1999 An ecophysiological approch to modelling resource fluxes in competing plants. J. Exp. Bot. 50, 15–28.

    Google Scholar 

  • Lemaire G and Salette J 1984 Relation entre dynamique de croissance et dynamique de prélèvement d'azote pour un peuplement de graminées fourragères. I. Etude de l'effet du milieu. Agronomie 4, 423–430.

    Google Scholar 

  • Lemaire G, Gastal F and Salette J 1989 Analysis of the effect of N nutrition on dry matter yield of a sward by reference to potential yield and optimum N content. XVI International Grassland Congress, Nice, France, pp. 179–180.

  • Lemaire G, Gastal F and Plénet D 1997a Dynamics of N uptake and N distribution in plant canopies. Use of crop N status index in crop modelling. In: Diagnostic Procedures for Crop N Management. Eds G Lemaire and I G Burns. pp 15–29. INRA, Paris.

    Google Scholar 

  • Lemaire G, Gastal F, Plénet D and Le Bot J 1997b Le prélèvement d'azote par les peuplements végétaux et la production des cultures. In: Maîtrise de l'azote dans les agrosystèmes. Eds G Lemaire and B Nicolardot. pp 121–139. INRA, Paris.

    Google Scholar 

  • Lemaire G, Plénet D and Grindlay D 1997c Management of N nutrition. Leaf N content as an indicator of crop N nutrition status. In: Diagnosis of the Nitrogen Status in Crops. Ed. G Lemaire. pp 189–199. Springer-Verlag, Berlin.

    Google Scholar 

  • Loué A 1984 Maïs. In: L'analyse végétale dans le contrôle de l'alimentation des plantes tempérées et tropicales. Eds P Martin-Prével, J Gagnard and P Gautier. pp 598–631. Lavoisier, Paris.

    Google Scholar 

  • McConnaughay K D M and Coleman J S 1998 Can plants track changes in nutrient availability via changes in biomass partitioning? Plant Soil 202, 201–209.

    Article  CAS  Google Scholar 

  • Millard P 1988 The accumulation and storage of nitrogen by herbaceous plants. Plant Cell Environ. 11, 1–8.

    Article  CAS  Google Scholar 

  • Ney B, Doré T and Sagan M 1997 The nitrogen requirement of major agricultural crops. Grain legumes. In: Diagnosis of the Nitrogen Status in Crops. Ed. G Lemaire. pp 107–117. Springer-Verlag, Berlin.

    Google Scholar 

  • Plénet D 1995 Fonctionnement des cultures de maïs sous contrainte azotée. Détermination et application d'un indice de nutrition. PhD Thesis, Institut National Polytechnique de Lorraine, Université de Nancy-Metz, Nancy, France, 247 pp.

  • Plénet D, Lubet E, Esvan J M and Desvignes P 1992 Effects of N level on dry matter and nitrogen accumulation for high yielding maize. In: Second Congress of European Society for Agronomy. Ed. A Scaife. pp 294–295. European Society for Agronomy, Warwick Univ.

    Google Scholar 

  • Pons T L and Pearcy R W 1994 Nitrogen reallocation and photosynthetic acclimation in response to partial shading in soybean plants. Physiol. Plant. 92, 636–644.

    Article  CAS  Google Scholar 

  • Poorter H, Remkes C and Lambers H 1990 Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiol. 94, 621–627.

    PubMed  CAS  Google Scholar 

  • Prioul J L, Reyss A and Schwebel-Dugué N 1990 Relationships between carbohydrate metabolism in ear and adjacent leaf during grain filling in maize genotypes. Plant Physiol. Biochem. 28, 485–493.

    CAS  Google Scholar 

  • Sage R F and Pearcy R W 1987 The nitrogen use efficiency of C3 and C4 plants. II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodium album L. and Amaranthus retroflexus L. Plant Physiol. 84, 959–963.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair T R and Horie T 1989 Leaf nitrogen, photosynthesis and crop radiation use efficiency: a review. Crop Sci. 29, 90–98.

    Article  Google Scholar 

  • Swank J C, Below F E, Lambert R J and Hageman R H 1982 Interaction of carbon and nitrogen metabolism in the productivity of maize. Plant Physiol. 70, 1185–1190.

    PubMed  CAS  Google Scholar 

  • Sylvester-Bradley R, Stokes D T, Scott R K and Willington V B A 1990 A physiological analysis of the diminishing responses of winter wheat to applied nitrogen. 2. Evidence. Asp. Appl. Biol. II, Cereal Quality 25, 289–300.

    Google Scholar 

  • Ta C T and Weiland R T 1992 Nitrogen partitioning in maize during ear development. Crop Sci. 32, 443–451.

    Article  CAS  Google Scholar 

  • Tollenaar M 1977 Sink-source relationships during reproductive development in maize. A review. Maydica 22, 49–75.

    Google Scholar 

  • Touraine B, Clarkson D T and Muller B 1994 Regulation of nitrate uptake at the whole plant level. In: A Whole Plant Perspective on Carbon Nitrogen Interactions. Eds J Roy and E Garnier. pp 11–30. SPB Academic Publishing, The Hague, The Netherlands.

    Google Scholar 

  • Tsai C Y, Huber D M and Warren H L 1978 Relationship of the kernel sink for N to maize productivity. Crop Sci. 18, 399–404.

    Article  CAS  Google Scholar 

  • Ulrich A 1952 Physiological bases for assessing the nutritional requirements of plants. In: Annual Review of Plant Physiology. Ed. D I Arnon. pp 207–228. Annual Review, INC., Stanford, USA

    Google Scholar 

  • Walworth J L, Letzsch W S and Sumner M E 1986 Use of boundary lines in establishing diagnostic norms. Soil Sci. Soc. Am. J. 50, 123–128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plénet, D., Lemaire, G. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant and Soil 216, 65–82 (1999). https://doi.org/10.1023/A:1004783431055

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004783431055

Navigation