Skip to main content
Log in

The Fluctuation Theorem as a Gibbs Property

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Common ground to recent studies exploiting relations between dynamical systems and nonequilibrium statistical mechanics is, so we argue, the standard Gibbs formalism applied on the level of space-time histories. The assumptions (chaoticity principle) underlying the Gallavotti–Cohen fluctuation theorem make it possible, using symbolic dynamics, to employ the theory of one-dimensional lattice spin systems. The Kurchan and Lebowitz–Spohn analysis of this fluctuation theorem for stochastic dynamics can be restated on the level of the space-time measure which is a Gibbs measure for an interaction determined by the transition probabilities. In this note we understand the fluctuation theorem as a Gibbs property, as it follows from the very definition of Gibbs state. We give a local version of the fluctuation theorem in the Gibbsian context and we derive from this a version also for some class of spatially extended stochastic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. F. Bonetto, G. Gallavotti, and P. Garrido, Chaotic principle: An experimental test, Physica D 105:226 (1997).

    Google Scholar 

  2. J. Bricmont and A. Kupiainen, Infinite dimensional SRB measures, Physica D 103:18–33 (1997).

    Google Scholar 

  3. J. Bricmont and A. Kupiainen, High temperature expansions and dynamical systems, Comm. Math. Phys. 178:703–732 (1996).

    Google Scholar 

  4. A. C. D. van Enter, R. Fernández, and A. D. Sokal, Regularity properties and pathologies of position-space renormalization transformations: Scope and limitations of Gibbsian theory, J. Stat. Phys. 72:879–1167 (1993).

    Google Scholar 

  5. D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Probability of second law violations in steady flows, Phys. Rev. Lett. 71:2401–2404 (1993).

    Google Scholar 

  6. G. Gallavotti, Chaotic hypothesis: Onsager reciprocity and fluctuation-dissipation theorem, J. Stat. Phys. 84:899–926 (1996).

    Google Scholar 

  7. G. Gallavotti, Extension of Onsager's reciprocity to large fields and the chaotic hypothesis, Phys. Rev. Lett. 77:4334–4337 (1996).

    Google Scholar 

  8. G. Gallavotti, A local fluctuation theorem. Preprint (1998).

  9. G. Gallavotti, Chaotic dynamics, fluctuations, nonequilibrium ensembles, Chaos 8:384–392 (1998).

    Google Scholar 

  10. G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics, Phys. Rev. Lett. 74:2694–2697 (1995).

    Google Scholar 

  11. G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in stationary states, J. Stat. Phys. 80:931–970 (1995).

    Google Scholar 

  12. H.-O. Georgii, Gibbs measures and phase transitions (de Gruyter, Berlin/New York, 1988).

    Google Scholar 

  13. S. Goldstein, R. Kuik, J. L. Lebowitz, and C. Maes, From PCA's to equilibrium systems and back, Comm. Math. Phys. 125:71–9 (1989).

    Google Scholar 

  14. E. T. Jaynes, Clearing up mysteries: The original goal, in Proceedings of the 8th International Workshop in Maximum Entropy and Bayesian Methods, Cambridge, England, August 1-5, 1988, J. Skilling, ed. (Kluwer Academic Publishers, Dordrecht, Holland, 1989). See also in Papers on Probability, Statistics, and Statistical Physics, R. D. Rosenkrantz, ed. (D. Reidel Publishing Co., Dordrecht, Holland), Reprints of 13 papers. See also http://bayes.wustl.edu/etj/node1.html.

    Google Scholar 

  15. Miaohuang Jiang and Y. B. Pesin, Equilibrium measures for coupled map lattices: Existence, uniqueness and finite-dimensional approximations. Preprint (1997).

  16. J. Kurchan, Fluctuation theorem for stochastic dynamics, J. Phys. A: Math. Gen. 31:3719–3729 (1998).

    Google Scholar 

  17. O. E. Lanford III, Entropy and equilibrium states in classical statistical mechanics, in Statistical Mechanics and Mathematical Problems (Batelle Seattle Rencontres 1971), Lecture Notes in Physics No. 20 (Springer-Verlag, Berlin, 1973), pp. 1–113; F. Comets, Grandes déviations pour des champs de Gibbs sur ℤd, C.R. Acad. Sci. Paris I 303:511-513 (1986); S. Olla, Large deviations for Gibbs random fields, Prob. Th. Rel. Fields 77:343-357 (1988).

    Google Scholar 

  18. J. L. Lebowitz, C. Maes, and E. R. Speer, Statistical mechanics of probabilistic cellular automata, J. Stat. Phys. 59:117–170 (1990).

    Google Scholar 

  19. J. L. Lebowitz and H. Spohn, The Gallavotti-Cohen fluctuation theorem for stochastic dynamics, Rutgers University preprint (1998).

  20. C. Maes, F. Redig, and A. Van Moffaert, The restriction of the Ising model to a layer. Preprint (1998).

  21. C. Maes, F. Redig, and A. Van Moffaert, Work in progress (1998).

  22. Y. B. Pesin and Y. G. Sinai, Space-time chaos in chains of weakly interacting hyperbolic mappings, Adv. Sov. Math. 3:165–198 (1991).

    Google Scholar 

  23. D. Ruelle, Positivity of entropy production in nonequilibrium statistical mechanics, J. Stat. Phys. 85:1–25 (1996).

    Google Scholar 

  24. D. Ruelle, Entropy production in nonequilibrium statistical mechanics, Comm. Math. Phys. 189:365–371 (1997).

    Google Scholar 

  25. D. Ruelle, Sensitive dependence on initial conditions and turbulent behavior of dynamical systems, Annals of the New York Academy of Sciences 356:408–416 (1978).

    Google Scholar 

  26. D. Ruelle, Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. Rutgers University Lecture Notes, October-November 1997-1998 (unpublished) (1998).

  27. B. Simon, The Statistical Mechanics of Lattice Gases, Vol. 1 (Princeton University Press, Princeton, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maes, C. The Fluctuation Theorem as a Gibbs Property. Journal of Statistical Physics 95, 367–392 (1999). https://doi.org/10.1023/A:1004541830999

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004541830999

Navigation