Skip to main content
Log in

RAPD divergence caused by microsite edaphic selection in wild barley

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Random amplified polymorphic DNA polymerase chain reaction (RAPDPCR) was used to assess genetic diversity in four subpopulations (86 individuals) of wild barley, Hordeum spontaneum, sampled from Tabigha microsite near the Sea of Galilee, Israel. The microsite consists of two 100 m transects that are topographically separated by 100 m, each equally subdivided into 50 m of basalt and terra rossa soil types. Despite the same macroclimate characterizing the area around the Sea of Galilee, the microsite offers two edaphically different microhabitats, with basalt being a more ecologically heterogeneous and broader-niche than the relatively drier but more homogeneous and narrow-niche terra rossa. Analysis of 118 putative loci revealed significant (P<0.05) genetic differentiation in polymorphism (P0.05) between the two soils across the transects with P being higher in the more heterogeneous basalt (mean P0.05 = 0.902), than in terra rossa (mean P0.05 = 0.820). Gene diversity (He) was higher in basalt (mean He=0.371), than in terra rossa (mean He=0.259). Furthermore, unique alleles were confined to one soil type, either in one or both transects. Rare alleles were observed more frequently in terra rossa than basalt, and in transect II only. Gametic phase disequilibria showed a larger multilocus association of alleles in basalt than terra rossa, and in transect I than II. Spearman rank correlation (rs) revealed a strong association between specific loci and soil types, and transects. Also, analysis of multilocus organization revealed soil-specific multilocus-genotypes. Therefore, our results suggest an edaphically differentiated genetic structure, which corroborates the niche width-variation hypothesis, and can be explained, in part, by natural selection. This pattern of RAPD diversity is in agreement with allozyme and hordein protein diversities in the same subpopulations studied previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken, H.H., 1955. Tables of cumulative binomial probability distribution. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Arnold, M.L., C.M. Buckner & J.J. Robinson, 1991. Pollenmediated introgression and hybrid speciation in Louisiana irises. Proc. Nat. Acad. Sci. USA 88: 1398–1402.

    Article  PubMed  CAS  Google Scholar 

  • Baker, W.K., 1975. Linkage disequilibrium over space and time in natural populations of Drosophila montana. Proc. Nat. Acad. Sci. USA 72: 4095–4099.

    Article  PubMed  CAS  Google Scholar 

  • Baum, B.R., E. Nevo, D.A. Johnson & A. Beiles, 1997. Genetic diversity in wild barley (Hordeum spontaneum C. Koch) in the Near East: a molecular analysis using random amplified polymorphic DNA (RAPD) markers. Genetic Resour. Crop Evol. 44: 147–157.

    Article  Google Scholar 

  • Bradshaw, A.D., 1972. Some of the evolutionary consequences of being a plant. Evol. Biol. 5: 25–47.

    Google Scholar 

  • Brown, A.H.D., 1979. Enzyme polymorphism in plant populations. Theor. Pop. Biol. 15: 1–42.

    Article  Google Scholar 

  • Brown, A.H.D., M.W. Feldman & E. Nevo, 1980. Multilocus structure of natural populations of Hordeum spontaneum. Genetics 96: 523–536.

    PubMed  Google Scholar 

  • Brown, A.H.D. & D.R. Marshall, 1981. Evolutionary changes accompanying colonization in plants. pp. 351–363 in: Evolution Today, edited by G.G.E. Scudder and J.L., Reveal. Proceedings of the Second International Congress of Systematics and Evolutionary Biology.

  • Brown, A.H.D., D. Zohary & E. Nevo, 1977. Association of alleles at esterase loci in wild barley, Hordeum spontaneum L. Nature 268: 430–431.

    Article  Google Scholar 

  • Brown, A.H.D., D. Zohary & E. Nevo, 1978. Outcrossing rates and heterozygosity in natural populations of Hordeum spontaneum Koch in Israel. Heredity 41: 49–62.

    Google Scholar 

  • Bustos, A.D., C. Casanova, C. Soler & N. Jouve, 1998. RAPD variation in wild populations of four species of the genus Hordeum (Poaceae). Theor. Appl. Genet. 96: 101–111.

    Article  Google Scholar 

  • Carlson, J.E., L.K. Tulsieram, J.C. Glaubitz, V.W.K. Luk, C. Kauffeldt & R. Rutledge, 1991. Segregation of random amplified DNA markers in F1 progeny of conifers. Theo. Appl. Genet. 83: 194–200.

    Google Scholar 

  • Christiansen, F.B., 1988. Frequency dependence and competition. Phil. Transac. Roy. Soc. London B 319: 587–600.

    CAS  Google Scholar 

  • Christiansen, F.B. & M. Feldman, 1975. Subdivided Populations: A review of the one-and two-locus deterministic theory. Theor. Pop. Biol. 7: 13–38.

    Article  CAS  Google Scholar 

  • Clegg, M.T. & R.W. Allard, 1972. Patterns of genetic differentiation in the slender wild oats species Avena babarta. Proc. Nat. Acad. Sci. USA 69: 1820–1824.

    Article  PubMed  Google Scholar 

  • Clegg, M.T., A.L. Kahler & R.W. Allard, 1978. Estimation of life cycle components of selection in an experimental plant population. Genetics 89: 765–792.

    PubMed  Google Scholar 

  • Dawson, I.K., K.J. Chalmer, R. Waugh & W. Powell, 1993. Detection and analysis of genetic variation in Hordeum spontaneum populations from Israel using RAPD markers. Mol. Ecol. 2: 151–159.

    PubMed  CAS  Google Scholar 

  • Devos, K.M. & M.D. Gale, 1992. The use of random amplified polymorphic DNA markers in wheat. Theor. Appl. Genet. 84: 567–572.

    Article  Google Scholar 

  • Dobzhansky, T., 1970. Genetics of the Evolutionary Process. Columbia University Press, New York.

    Google Scholar 

  • Endler, J., 1977. Geographic variation, speciation and clines. Monographic Population Biology Vol. 10, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Endler, J., 1986. Natural Selection in the Wild. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Ford, E.B., 1964. Ecological Genetics. Metheun, London.

    Google Scholar 

  • Gillespie, J.H., 1991. The Causes of Molecular Evolution. Oxford University Press, New York, Oxford.

    Google Scholar 

  • Gutterman, Y. & E. Nevo, 1994. Temperatures and ecological-genetic differentiation affecting the germination of Hordeum spontaneum caryopses harvested from three populations: the Negev desert and the opposing slopes on Mediterranean Mount Carmel. Israel J. Plant Sci. 42: 183–195.

    Google Scholar 

  • Hadrys, H., M. Balick & B. Schierwater, 1992. Applications of random amplified polymorphic DNA in molecular ecology. Mol. Ecol. 1: 55–63.

    PubMed  CAS  Google Scholar 

  • Hamrick, J.L. & R.W. Allard, 1972. Microgeographic differentiation in allozyme frequencies of Avena babarta. Proc. Nat. Acad. Sci. USA, 69: 2100–2104.

    Article  PubMed  CAS  Google Scholar 

  • Harland, S.C., 1936. The genetical conception of the species. Biol. Rev. 11: 83–112.

    Google Scholar 

  • Hartl, D., 1980. Principles of Population Genetics, Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Hedrick, P.W., 1980. Hitchhiking: a comparison of linkage and partial selfing. Genetics 94: 791–808.

    PubMed  CAS  Google Scholar 

  • Hedrick, P.W., 1982. Genetic hitchhiking: a new factor in evolution? Bioscience 32: 845–853.

    Article  Google Scholar 

  • Heywood, J.S., 1991. Spatial analysis of genetic variation in plant populations. Annual Rev. Ecol. System. 22: 335–355.

    Article  Google Scholar 

  • Jain, S.K., 1976. Patterns of survival and microevolution in plant populations, pp. 49–89 in Population genetics and ecology, edited by S. Karlin, E. Nevo, Academic Press, New York.

    Google Scholar 

  • Junghans, H., M. Metzlaff, 1990. A simple and rapid method for the preparation of total plant DNA. BioTechniques 8: 176.

    PubMed  CAS  Google Scholar 

  • Kahler, A.L., R. W. Allard, M. Krzakowa, C.F. Wehrhan & E. Nevo, 1980. Association between isozyme phenotypes and environment in slender wild oat (Avena babarta) in Israel. Theor. Appl. Gene. 56: 31–47.

    CAS  Google Scholar 

  • Karlin, S. & R.C. Cardon, 1994. Computational sequence analysis. Annual Rev. Microbiol. 48: 619–654.

    Article  CAS  Google Scholar 

  • Kashi, Y., D. King & M. Soller, 1997. Simple sequence repeats as a source of quantitative genetic variation. Elsevier Trends J. 13(2): 74–78.

    Article  CAS  Google Scholar 

  • Kauffman, S., 1993. The Origin of Order. Self Organization and Selection in Evolution, Oxford University Press, Oxford.

    Google Scholar 

  • Kimura, M., 1981. Possibility of extensive neutral evolution under stabilizing selection with special reference to nonrandom usage of synonymous codons. Proc. Nat. Acad. Sci. USA 78: 5773–5777.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Klein-Lankhorst, R.M., A. Vermunt, R. Weide, T. Liharska & P. Zabel, 1991. Isolation of molecular markers for tomatoes (L. esculentum) using random amplified polymorphic DNA (RAPD). Theor. Appl. Genet. 83: 108–114.

    Article  CAS  Google Scholar 

  • Kirzhner, V.M., A.B. Korol, Y.I. Ronin & E. Nevo, 1995. Genetic supercycles caused by cyclical selection. Proc. Nat. Acad. Sci. USA 92: 7130–7133.

    Article  PubMed  CAS  Google Scholar 

  • Kirzhner, V.M., A.B. Korol & E. Nevo, 1996. Complex dynamics of multilocus systems subjected to cyclical selection. Proc. Nat. Acad. Sci. USA 93: 6532–6535.

    Article  PubMed  CAS  Google Scholar 

  • Korol, A.B., I.A. Preygel & S.I. Preygel, 1994. Recombination variability and evolution: algorithms of estimation and population genetic models. Chapman Hall, London.

    Google Scholar 

  • Latter, B.D.H., 1972. Selection in finite populations with multiple alleles. III. Genetic divergence with centripetal selection and mutation. Genetics, 53: 371–387.

    Google Scholar 

  • Lavie, B., V.T. Stow, T. Krugman, A. Beiles & E. Nevo, 1993. Fitness in wild barley from two opposing slopes of a Mediterranean Microsite at Mount Carmel, Israel. Barley Genetics Newsletter 23: 12–14.

    Google Scholar 

  • Levene, H., 1953. Genetic equilibrium when more than one ecological niche is available. Amer. Natur. 87: 831–833.

    Article  Google Scholar 

  • Lewontin, R.C., 1974. The Genetic Basis of Evolutionary Change. Columbia University Press, New York.

    Google Scholar 

  • Linhart, Y.B. & M.C. Grant, 1996. Evolutionary significance of local genetic differentiation in plants. Annual Rev. Ecol. System. 27: 237–277.

    Article  Google Scholar 

  • Lynch, M. & B. Milligan, 1994. Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3: 91–99.

    PubMed  CAS  Google Scholar 

  • Mackay, T.F.C., 1981. Genetic variation in varying environments. Genet. Res. 37: 79–93.

    Article  Google Scholar 

  • McDonald, J.F. & F.H. Ayala, 1974. Genetic response to environmental heterogeneity. Nature 250: 572–574.

    Article  PubMed  CAS  Google Scholar 

  • Michelmore, R.W., I. Paran & R.V. Kessel, 1991. Identification of markers linked to diseases resistance genes by segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc. Nat. Acad. Sci. USA 88: 9828–9832.

    Article  PubMed  CAS  Google Scholar 

  • Milkman, R., 1982. Towards a unifying selection theory, pp. 105–118 in: Perspectives of Evolution, edited by R. Milkman Sinauer Associates, Sunderland Massachusetts.

    Google Scholar 

  • Miller, R.D., 1977. Genetic variability in the slender wild oat Avena babarta in California. PhD dissertation, University of California, Davis.

    Google Scholar 

  • Morley, F.H.W., 1956. Natural selection and variation in plants, pp. 47–56 in: Genetics and the Twentieth Century Darwinism, edited by Wooldridge. Cold Spring Harbor Symposia, Vol. 24.

  • Isabel, N., J. Beaulieu & J. Bosquet, 1995. Complete congruence between gene diversity estimates derived from genotypic data of isozyme and random amplified polymorphic DNA loci in black spruce. Proc. Nat. Acad. Sci. USA 92: 6369–6373.

    Article  PubMed  CAS  Google Scholar 

  • Nei, M., 1975. Molecular Population Genetics and Evolution. Amsterdam, North-Holland.

    Google Scholar 

  • Net, M., 1978. Estimation of average heterozygosity and genetic distance from small number of individuals. Genetics 89: 583–590.

    Google Scholar 

  • Nei, M., 1988. Relative roles of mutation and selection in the maintenance of genetic variability. Phil. Transac. Roy. Soc. London B 319: 615–629.

    CAS  Google Scholar 

  • Nevo, E., A.H.D. Brown, D. Zohary, N. Storch & A. Beiles, 1981. Microgeographic edaphic differentiation in allozyme polymorphism of wild barley (Hordeum spontaneum, Poaceae). Plant System. Evol. 138: 287–292.

    Article  Google Scholar 

  • Nevo, E., A. Beiles & N. Storch, 1983. Microgeographic differentiation of hordein polymorphisms of wild barley. Theor. Appl. Genet. 64: 123–132.

    Article  Google Scholar 

  • Nevo, E., A. Beiles, D. Kaplan & E.M. Golenberg, 1986a. Natural selection of allozyme polymorphisms: a microsite test revealing ecological genetic differentiation in wild barley. Evolution 40: 13–20.

    Article  Google Scholar 

  • Nevo, E., A. Beiles, D. Kaplan, N. Storch & D. Zohary, 1986b. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum (Poaceae), in Iran. Plant System. Evol. 153: 141–164.

    Article  Google Scholar 

  • Nevo, E., D. Zohary & A. Beiles, 1986c. Genetic resources of wild barley in the Near East: structure, evolution and application in breeding. Biol. J. Linnean Soc. 27: 355–380.

    Google Scholar 

  • Nevo, E., D. Zohary, A. Beiles, D. Kaplan & N. Storch, 1986d. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Turkey. Genetica 68: 203–213.

    Article  Google Scholar 

  • Nevo, E., A. Beiles & T. Krugman, 1988. Natural selection of allozyme polymorphisms. A microgeographic differentiation by edaphic, topographical and temporal factors in wild emmer wheat, Triticum dicoccoides. Theor. Appl. Genet. 76: 737–752.

    Article  Google Scholar 

  • Nevo, E., K. Tamar & A. Beiles, 1994. Edaphic natural selection of allozyme polymorphism in Aegilops peregrina at a Galilee microsite in Israel. Heredity 72: 109–112.

    CAS  Google Scholar 

  • Nevo, E., I. Apelbaum-Elkaher, J. Garty & A. Beiles, 1997a. Natural selection causes microscale allozyme diversity in wild barley and a lichen at 'Evolution Canyon', Mt. Carmel, Israel. Heredity 78: 373–382.

    Article  Google Scholar 

  • Nevo, E., V. Kirzhner, A. Beiles & A. Korol, 1997b. Selection versus random drift: Long term polymorphism persistence in small populations (evidence and modelling). Phil. Transac. Roy. Soc. London B 352: 381–389.

    Article  Google Scholar 

  • Owuor, E.D., T. Fahima, A. Beiles, A. Korol & E. Nevo, 1997. Population genetic response to microsite ecological stress in wild barley, Hordeum spontaneum. Mol. Ecol. 6: 1177–1187.

    Article  Google Scholar 

  • Pakniyat, H., W. Powell, E. Baird, L.L. Handley, D. Robinson, C.M. Scrimgeour, E. Nevo, C.A. Hackett, P.D.S. Caligari & B.P. Forster, 1997. AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome 40: 332–341.

    Article  CAS  PubMed  Google Scholar 

  • Papentin, F., 1980: On order and complexity. I. General considerations. J. Theor. Biol. 87: 421–456.

    Article  Google Scholar 

  • Poulsen, D.M.E., R.J. Henry, R.P. Johnson, J.A.G. Irwin & R.G. Rees, 1995. The use of bulk segregant analysis to identify a RAPD marker linked to leaf rust resistance in barley. Theor. Appl. Genet. 91: 270–273.

    Article  Google Scholar 

  • Powell, J.A., 1971. Genetic polymorphism in varied environments. Science 174: 1035–1036.

    PubMed  CAS  Google Scholar 

  • Powell, J.A. & H. Wistrand, 1978. The effect of a heterogeneous environment and a competitor on genetic variation in Drosophila. Amer. Natur. 112: 935–947.

    Article  Google Scholar 

  • Reiseberg, L.H., 1996. Homology among RAPD markers in interspecific comparisons. Mol. Ecol. 5: 99–105.

    Google Scholar 

  • Seitz, A., 1988. Microgeographic variation of genetic polymorphism in Argyresthidae medica (Lep.: Argyresthiidae), in Population Genetics and Evolution. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Seitz, A. & M. Komma, 1984. Genetic polymorphism and its ecological background in Tephritid populations (Diptera: Tephritidae), in Population Biology and Evolution, (edited by K. Wohrmann, V. Loeschcke) Berlin, Heidelberg, New York.

  • Soule, M. & B.R. Stewart, 1970. The niche variation hypothesis: a test and alternatives. Amer. Natur. 104: 85–97.

    Article  Google Scholar 

  • Sueoka, N., 1988. Directional mutation pressure and neutral molecular evolution. Proc. Nat. Acad. Sci. USA 85: 2653–2657.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, G., 1977. The effect of a selected locus on linked neutral loci. Genetics 85: 753–788.

    PubMed  CAS  Google Scholar 

  • Van Valen, L.M., 1965. Morphological variation and width of ecological niche. Amer. Natur. 99: 377–390.

    Article  Google Scholar 

  • Webster, T.P., 1973. Adaptive linkage disequilibrium between two esterase loci of a Salamander. Proc. Nat. Acad. Sci. USA 70: 1156–1160.

    Article  PubMed  CAS  Google Scholar 

  • Weinings, S. & J.R. Henry, 1994. Molecular analysis of the DNA polymorphism of wild barley (Hordeum spontaneum) germplasm using the polymerase chain reaction. Genet. Resour. Crop Evol. 42: 237–281.

    Google Scholar 

  • Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6534–7213.

    Google Scholar 

  • Wilson, A.C., 1975. Evolutionary importance of gene regulation. Stadler Symp. 7: 117–134.

    CAS  Google Scholar 

  • Wright, S., 1938: Size of population and breeding structure in relation to evolution. Science 87: 430–431.

    Google Scholar 

  • Yeh, F.C., Rong-Cai Yang & T. Boyle, 1992. POPGENE VERSION 1.21. Microsoft Window-based Freeware for Population Genetic Analysis. Quick user guide. University of Alberta, Center for International Forestry Research.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eviatar Nevo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owuor, E.D., Fahima, T., Beharav, A. et al. RAPD divergence caused by microsite edaphic selection in wild barley. Genetica 105, 177–192 (1999). https://doi.org/10.1023/A:1003781711908

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003781711908

Navigation