Skip to main content
Log in

Origin and evolution of plasmids

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Studies on the origin and evolution of plasmids may provide valuable insights on the promiscuous nature of DNA. The first examples of the selfish nature of nucleic acids are exemplified by primordial oligoribonucleotides which evolved into primitive replicons. The propagation of these molecules were likely patterned after the current viral RNA ribozymes, which have been recently shown to possess RNA synthesizing and template mediated polymerizing capabilities in the absence of proteins. The parasitic nature of nucleic acids is depicted by satellite nucleic acid molecules associated with viruses. The satellites of adenovirus and tobacco ringspot virus serve as established examples: they contain no open reading frames. Comparative analysis of the replication origins of virions and plasmids show them to be conserved, originating from the simplest autocatalytic replicon to highly complex and evolved plasmids, replicating by a rolling circle mechanism. The eventual association of proteins with nucleic acids provided added efficiency and protective advantages for molecular perpetuation. The promiscuous and selfish nature of plasmids is demonstrated by their ability to genetically engineer their host so that the host cell is best able to cope and survive in hostile environments. Survival of the host ensures survival of the plasmid. Sequestering of genes by plasmids occurs when the environmental conditions negatively affect the host. The sequestering mechanism is fundamental and forms the outreach mechanisms to generate and propagate macromolecules of increasing size when necessary for survival. The level of sophistication of plasmids increases with the addition of new genes such as those that allow the host to occupy a specific environment normally inhospitable to the host cell. The vast range of plasmid types which have obtained genes interchangeably reflect the levels of sophistication achieved by these macromolecules. The Ti plasmid in Agrobacterium tumefaciens and the pSym and accessory plasmids in Rhizobium illustrate the level of complexity attained by replicons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brom S, García de los Santos A, Stepkowsky T, Flores MD, Dávila G, Romero D & Palacios R (1992) Different plasmids of Rhizobium leguminosarumbv. phaseoli are required for optimal symbiotic performance. J. Bacteriol. 174: 5183–5189

    Google Scholar 

  • Bruening G (1990) Replication of satellite RNA of tobacco ringspot virus. Seminars in Virology 1: 127-134

    Google Scholar 

  • Bundock P & Hooykaas PJJ (1996) Integration of Agrobacterium tumefaciensTDNA in the Saccharomyces cerevisiaegenome by illegitimate recombination. Proc. Natl. Acad. Sci. USA 93: 15272-15275

    Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A & Hooykaas, PJJ (1995) Trans-kingdom TDNA transfer from Agrobacterium tumefaciensto Saccharomyces cerevisiae. EMBO J. 14: 3206- 3214

    Google Scholar 

  • Casjens S, Delange M, Ley III HL, Rosa P & Huang WM (1995) Linear chromosomes of lyme disease agent spriochetes: genetic diversity and conservation of gene order. J. Bacteriol. 177: 2769- 2780

    Google Scholar 

  • Chesnokova O, Coutinho JB, Khan IH, Mikhail MS & Kado CI (1997) Characterization of flagella genes of Agrobacterium tumefaciensand the effect of a bald strain on virulence. Mol. Microbiol. 23: 579-590

    Google Scholar 

  • Cho, K, Fuqua C, Martin BS & Winans SC (1996) Identification of Agrobacterium tumefaciensgenes that direct the complete catabolism of octopine. J. Bacteriol. 178: 1872-1880

    Google Scholar 

  • Coplin DL, Rowan RG Chisholm DA & Whitmoyer RE (1981) Characterization of plasmids in Erwinia stewartii. Appl. Environ. Microbiol. 42: 599-604

    Google Scholar 

  • Datta N(1975) Epidemiology and classification of plasmids. In: Schlessinger D (Ed) Microbiology-1974 (pp 9-15) American Society for Microbiology, Washington, DC

  • Dessaux Y, Petit A & Tempé J (1992) Opines in Agrobacteriumbiology. In: Verma DPS (Ed) Molecular Signals in Plant-Microbe Communications (pp 109-136) CRC Press, Boc Raton, Florida

    Google Scholar 

  • Dimitriadis GJ (1978) Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes. Nature 274: 923-924

    Google Scholar 

  • Doty SL, Yu MC, Lundin JI, Heath JD & Nester EW (1996) Mutational analysis of the input domain of the VirA protein of Agrobacterium tumefaciens. J. Bacteriol. 178: 961-970

    Google Scholar 

  • Ekland EH & Bartel DP (1996) RNA-catalyzed RNA polymerization using nucleoside triphosphates. Nature 382: 373-376

    Google Scholar 

  • Ellis JG & Murphy PJ (1981) Four new opines from crown gall tumours-their detection and properties. Mol. Gen. Genet. 181: 36-43

    Google Scholar 

  • Farrand SK (1993) Conjugal transfer of Agrobacteriumplasmids. In: Clewell DB (Ed) Bacterial Conjugation (pp. 255-291) Plenum Press, New York

    Google Scholar 

  • Fukuhara H (1995) Linear DNA plasmids of yeasts. FEMS Microbiol. Letters 131: 1-9

    Google Scholar 

  • Fullner KJ, Lara JC & Nester EW (1996) Pilus assembly by AgrobacteriumT-DNA transfer genes. Science 273: 1107-1109

    Google Scholar 

  • Fuqua WC, Winans SC & Greenburg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176: 269-275

    Google Scholar 

  • Gallie DR, Zaitlin D, Perry KL & Kado CI (1984) Characterization of the replication and stability regions of Agrobacterium tumefaciensplasmid pTAR. J. Bacteriol. 157: 739-745

    Google Scholar 

  • Grosschedl R & Hobom G (1979) DNA sequences and structural homologies of the replication origins of lambdoid bacteriophages. Nature 277: 621-627

    Google Scholar 

  • Hayakawa T, Tanaka T, Sakaguchi K, Otake N & Yonehara H (1979) A linear plasmid-like DNA in Streptomycessp. producing lankacidin group antibiotics. J. Gen. Appl. Microbiol. 25: 255-260

    Google Scholar 

  • Hooykaas PJJ & Beijersbergen AGM (1994) The virulence system of Agrobacterium tumefaciens. Annu. Rev. Phytopathol. 32: 157- 179

    Google Scholar 

  • Hwang I, Li P-L, Zhang L, Piper KR, Cook DM, Tate M & Farrand SK (1994) TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acyl homoserine lactone autoinducer. Proc. Natl. Acad. Sci. USA 91: 4639-4643

    Google Scholar 

  • Jacob F, Brenner S & Cuzin F (1963) On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp. Quant. Biol. 28: 329-348

    Google Scholar 

  • Kado CI (1991) Molecular mechanisms of crown gall tumorigenesis. Crit Rev Plant Sci 10: 1-32

    Google Scholar 

  • Kado CI (1993) Agrobacteriummediated transfer and stable incorporation of foreign genes in plants. In: Clewell DB (Ed) Bacterial Conjugation (pp. 243-254). Plenum Press, New York

    Google Scholar 

  • Kado CI (1994) TDNA transfer to plants is mediated by piluslike apparatus encoded by the Ti plasmid virBoperon. Adv. Plant Biotechnol. 4: 23-36

    Google Scholar 

  • Kado CI (1994a) Promiscuous DNA transfer system of Agrobacterium tumefaciens:role of the virBoperon in sex pilus assembly and synthesis. Mol. Microbiol. 12: 17-22

    Google Scholar 

  • Kado CI & Lurquin PF (1978) Reconstitution of plasmid DNA with tobacco mosaic virus protein for introducing plasmids into higher plant cells. Microbiology 1978: 231-234

  • Kelly B & Kado CI (1997) Promiscous gene transfer of Agrobacterium tumefaciensextends to the actinomycete Streptomyces lividans. Amer. Soc. Microbiol. Gen. Mtg. Abstr. p 47

  • Kinashi H, Shimaji M & Sakai A (1987) Giant linear plasmids in Streptomyceswhich code for antibiotic biosynthesis genes. Nature 328: 454-456

    Google Scholar 

  • Lin, LS, Kim YJ & Meyer RJ (1987) The 20 bp, directly repeated DNA sequence of broad host range plasmid R1162 exerts incompatibility in vivo and inhibits R1162 DNA replication in vitro. Mol. Gen. Genet. 208: 390-397

    Google Scholar 

  • Lurquin PF (1979) Entrapment of plasmid DNA by liposomes. Nucleic Acids Res. 6: 3773-3784

    Google Scholar 

  • Mayor HD, Torikai K, Melnick JL & Mandel M (1969) Plus and minus single-stranded DNA separately encapsidated in adeno-associated satellite virions. Science 166: 1280-1282

    Google Scholar 

  • Michel, MR, Hirt B & Weil R (1967) Mouse cellular DNA enclosed in polyoma viral capsids (pseudovirions). Proc. Natl. Acad. Sci. USA 58: 1381-1388

    Google Scholar 

  • Miyashita S, Hirochika H, Ikeda JE & Hashiba T (1990) Linear plasmid DNAs of the plant pathogenic fungus Rhizoctonia solaniwith unique terminal structures. Mol. Gen. Genet. 220: 165-171

    Google Scholar 

  • Murotsu T, Matsubara K, Sugisaki H & Takanami M (1981) Nine unique repeating sequences in a region essential for replication and incompatibility of the mini-F plasmid. Gene 15: 257-271

    Google Scholar 

  • Netolitzky DJ, Wu X, Jensen SE & Roy KL (1995) Giant linear plasmids of α-lactam antibiotic producing Streptomyces. FEMS Microbiol. Lett. 131: 27-34

    Google Scholar 

  • Novick RP (1969) Extrachromosomal inheritance in bacteria. Bact. Rev. 33: 210-235

    Google Scholar 

  • Okumura MS & Kado CI (1992) The region essential for efficient autonomous replication of pSa in Escherichia coli.Mol. Gen. Genet. 235: 55-63

    Google Scholar 

  • Otten L, Crouzet P, Salomone JY, de Ruffray P & Szegedi E (1995) Agrobacterium vitisstrain AB3 harbors two independent tartrate utilization systems, one of which is encoded by the Ti plasmid. Mol Plant-Microbe Interact. 8: 138-146

    Google Scholar 

  • Petit A, Delhaye S, Tempé J & Morel G (1970) Recherches sur les guanidines des tissus de crowngall. Mise en évidence d'une relation biochimique spécifique entre les souches d'Agrobacterium tumefacienset les tumeurs qu'elles induisent. Physiol. Vég. 8: 205-213

    Google Scholar 

  • Richmond MH (1970) Plasmids and chromosomes in prokaryotic cells. In: Charles HP, Knight CJG (Eds) Organization and Control in Prokaryotic and Eukaryotic Cells (pp 249-277) Cambridge University Press, London

    Google Scholar 

  • Rogowsky PM, Powell BS, Shirasu K, Lin TS, Morel P, Zyprian EM, Steck TR & Kado CI (1990) Molecular characterization of the virregulon of Agrobacterium tumefaciens: complete nucleotide sequence and gene organization of the 28.63-kbp regulon cloned as a single unit. Plasmid 23: 85-106

    Google Scholar 

  • Salmond GPC, Bycroft BW, Stewart GSAB & Williams P (1995) The bacterial ‘enigma’: cracking the code of cell-cell communication. Mol. Microbiol. 16: 615-624

    Google Scholar 

  • Scherer G (1978) Nucleotide sequence of the O gene and of the origin of replication in bacteriophage λ DNA. Nucleic Acids Res. 5: 3141-3156

    Google Scholar 

  • Schneider IR & White RM (1976) Tobacco ringspot virus codes for the coat protein of its satellite. Virology 70: 244-246

    Google Scholar 

  • Shirasu K & Kado CI (1993) Membrane location of the Ti plasmid VirB proteins involved in the biosynthesis of a pilin-like conjugative structure on Agrobacterium tumefaciens. FEMS Microbiol Lett. 111: 287-294

    Google Scholar 

  • del Solar G, Moscoso & Espinosa M (1993) Rolling circle-replicating plasmids from Gram-positive and Gram-negative bacteria: a wall falls. Mol. Microbiol. 8: 789-796

    Google Scholar 

  • Stalker DM, Kolter R & Helinski DR (1982) Plasmid R6K DNA replication, I. Complete nucleotide sequence of an autonomously replicating segment. J. Mol. Biol. 161: 33-43

    Google Scholar 

  • Stalker DM, Thomas CM & Helinski DR (1981) Nucleotide sequence of the region of the origin of replication of the broad host range plasmid RK2. Mol. Gen. Genet. 181: 8-12

    Google Scholar 

  • Sugiyama T (1966) Tobacco mosaic viruslike rods formed by ‘mixed reconstitution’ between MS2 ribonucleic acid and tobacco mosaic virus protein. Virology 28: 488-492

    Google Scholar 

  • Szegedi E, Otten L & Czako M (1992) Diverse types of tartrate plasmids in Agrobacterium tumefaciensbiotype III strains. Mol. Plant-Microbe Interact. 5: 435-438

    Google Scholar 

  • Taghavi S, Provoost A, Mergeay M & van der Lelie D (1996) Identification of a partition and replication region in the Alcaligenes eutrophusmegaplasmid pMOL28. Mol. Gen. Genet. 250: 169-179

    Google Scholar 

  • Tol HV, Buzayan JM & Bruening G (1991) Evidence for spontaneous circle formation in the replication of the satellite RNA of tobacco ringspot virus. Virology 180: 23-30

    Google Scholar 

  • Tolun A & Helinski DR (1982) Separation of the minimal replication region of the F plasmid into a replication origin segment and a transacting segment. Mol. Gen. Genet. 186: 372-377

    Google Scholar 

  • Ts'o, POP (1968) The physicochemical basis of interactions of nucleic acids. In: Pullman B (Ed) Molecular Associations in Biology (pp. 39-75). Academic Press, New York

  • Vary P (1994) Prime time for Bacillus megaterium. Microbiol. 140: 1001-1013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kado, C.I. Origin and evolution of plasmids. Antonie Van Leeuwenhoek 73, 117–126 (1998). https://doi.org/10.1023/A:1000652513822

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000652513822

Navigation