Skip to main content
Log in

On the gestalt concept

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

We define a gestalt as the invariants of a collection of patterns that can mutually be transformed into each other through a class of transformations encoded by, or conversely, determining that gestalt. The class of these transformations needs to satisfy structural regularities like the ones of the mathematical structure of a group. This makes an analysis of a gestalt possible in terms of relations between its representing patterns. While the gestalt concept has its origins in cognitive psychology, it has also important implications for morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marr, D., 1982. Vision. Cambridge, MA.

  2. Wagner, G.P., Laubichler, M.D., 2000. Character identification in evolutionary biology: The role of the organism. Theory Biosci. 119, 20–40.

    Google Scholar 

  3. Cf. Kutsch, W., Breidbach, O., 1994. Homologous structures in the nervous systems of arthropoda. Advances in Insect Physiology 24, 1–113.

    Article  Google Scholar 

  4. Naef, A., 1919. Idealistische Morphologie und Phylogenetik. Zur Methodik der systematischen Morphologie. Jena.

  5. D'Arcy W. Thompson, 1917. On Growth and Form. Cambridge.

  6. Bonner, J.T., 1974. On Development. The Biology of Form. Cambridge, MA.

  7. Ghiselin, M.T., 2000. The founders of morphology as alchemists. In: Ghiselin, M.T., Leviton, A.E. (Eds.), Cultures and Institutions of Natural History. Essays in the History and Philosophy of Science. San Francisco, pp. 39–49.

  8. Patterson, C., 1988. Homology in classical and molecular biology. Mol. Biol. Evol. 5, 603–625; Raff, R.A., 1996. The Shape of Life. Genes, Development, and the Evolution of Animal Form. Chicago.

    PubMed  CAS  Google Scholar 

  9. Cf. Breidbach, O., 1994. Entwicklungsmorphologie. Ein neuer Ansatz zur Fundierung einer organismischen Biologie? Jb. f. Geschichte und Theorie der Biologie, 1, 21–43; Lawrence, P., 1992. The Making of a Fly. The Genetics of Animal Design. Oxford.

    Google Scholar 

  10. Thom, R., 1975. Structural Stability and Morphogenesis, Reading, MA.

  11. Thom, R., 1971. Modèles mathématiques de la morphogénèse. Pisa.

  12. Strube, G. (Ed.), 1996. Wörterbuch der Kognitionswissenschaft. Stuttgart, see also Stadler, M., 1999. Gestalt/Gestalttheorie. In: Sandkühler (Ed.), Enzyklopädie Philosophie, vol. 1, pp. 492–494.

  13. Chr. v. Ehrenfels, 1890. Über “Gestaltqualitäten,” Vierteljahresschrift für wissenschaftliche Philosophie 14, 242–292; English translation: On ‘Gestalt qualities’, pp. 82–117. In: Smith, B. (Ed.), 1988. Foundations of gestalt theory, Philosophia Verlag, München, Wien.

    Google Scholar 

  14. Wertheimer, M., 1912. Experimentelle Studien über das Sehen von Bewegung, Zeitschr. f. Psychologie 61, 161–265.

    Google Scholar 

  15. Köhler, W., 1921. Intelligenzprüfungen an Menschenaffen, Berlin.

  16. Grelling, K., Oppenheim, P., 1937/38. Der Gestaltbegriff im Lichte der neuen Logik, Erkenntnis 7, 211–25; English translation: The concept of gestalt in the light of modern logic, pp. 191–205. In: Smith, B. (Ed.), 1988. Foundations of gestalt theory, Philosophia Verlag, München, Wien. We are grateful to Barry Smith for pointing out that work of Grelling and Oppenheim.

    Google Scholar 

  17. Ibd., p. 196.

    Google Scholar 

  18. Klein, F., 1893. Vergleichende Betrachtungen über neuere geometrische Forschungen. Math. Ann, 43, 63–100 (a reprint, with some corrections, of his “Erlanger Programm” of 1872); Lie, S., Engel, F., 1888–93. Theorie der Transformationsgruppen, vol. 3. Leipzig.

    Article  Google Scholar 

  19. M. Wertheimer, loc. cit..

    Google Scholar 

  20. See Lie and Engel, loc.cit. For a modern introduction, see Zeidler, E., pp. 643 ff. in Teubner-Taschenbuch der Mathematik, Teil II, Stuttgart, Leipzig, 1995.

  21. In mathematics, this concept of a transformation group as the invariance group of a geometric structure, and conversely, the characterization of a geometric structure by a transformation group has been developed by Felix Klein in his “Erlanger Programm” (1872), cf. Klein, F., 1921–23. Gesammelte mathematicsche Abhandlungen. vols. I–III. Berlin.

  22. Cf. Chen, L., 2005. The topological approach to perceptual organization. Visual Cognition 12, 553–637. We thank Tobias Elze for this reference.

    Article  Google Scholar 

  23. We observe in passing that this also constitutes a fundamental principle of modern theoretical elementary particle physics underlying the scheme for unifying the known types of fields, a paradigm being the so-called standard model of elementary particle physics, cf e.g. St. Weinberg, 1995, 1996. The quantum theory of fields, Vol. I, II. Cambridge University Press, Cambridge.

    Google Scholar 

  24. This is relevant in the context of O. Breidbach, 2000. Das Anschauliche oder über die Anschauung der Welt. Wien.

  25. Smith, J.D., Minda, J.P., 2002. Distinguishing prototype-based and examplar-based processes in dotpattern category learning. J. Experim. Psych.: Learning, Memory, and Cognition 28, 800–11. We thank Barry Smith for this reference.

    Article  Google Scholar 

  26. Thom, R. loc. cit. Thom, R., 1971. Modèles mathématiques de la morphogénèse. Pisa.

  27. See for example I. Prigogine, 1993. Le leggi del caos, Laterza, Rome.

    Google Scholar 

  28. See e.g. Jost, J. Neural Networks, Concepts, Mathematical Tools, and Questions, to appear.

  29. Chomsky, N., 1965. Aspects of the Theory of Syntax. Cambridge, MA; Chomsky, N., 1995. The Minimalist Program. Cambridge, MA.

  30. Cf. Jost, J. Complexity and cognition, in preparation. There, it will be argued that the question about the origin and generation of a system of internal rules cannot be reduced to adaptation to some preexisting environment, and the general structural principles of such a process will be developed. See also Breidbach, O., 2001, Deutungen. Weilerswist: Velbrück, which is concerned with the problem of the validity of relational systems and which treats the circle of problems around a neurosemantic definition of validity, building upon Putnam's criticism of representationism.

  31. For example, Ellis, A., Young, A., 1988. Human cognitive neuropsychology, L. Erlbaum.

  32. For the problem of the translation between different language and culture systems see Breidbach, O., 1999. Internal representations—A prelude for neurosemantics The Journal of Mind and Behavior 20(4), 403–420, and Breidbach, O., Deutungen, loc. cit.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Breidbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breidbach, O., Jost, J. On the gestalt concept. Theory Biosci. 125, 19–36 (2006). https://doi.org/10.1016/j.thbio.2006.02.001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.thbio.2006.02.001

Keywords

Navigation