Skip to main content
Log in

Clinical validation of SPECT attenuation correction using x-ray computed tomography—derived attenuation maps: Multicenter clinical trial with angiographic correlation

  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Nonuniform attenuation artifacts cause suboptimal specificity of stress single photon emission computed tomography (SPECT) myocardial perfusion images. In phantoms, normal subjects, and patients suspected of having coronary artery disease (CAD), we evaluated a new hybrid attenuation correction (AC) system that combines x-ray computed tomography (CT) with conventional stress SPECT imaging.

Methods and Results

The effect of CT-based AC was evaluated in phantoms by assessing homogeneity of normal cardiac inserts. AC improved homogeneity of normal cardiac phantoms from 11% ± 2% to 5% ± 1% (P < .001). Attenuation-corrected normal patient files were created from 37 normal subjects with a low likelihood (<3%) of CAD. The diagnostic performance of AC for detection of CAD was evaluated in 118 patients who had stress technetium 99m sestamibi or tetrofosmin stress SPECT imaging and coronary angiography. SPECT images with and without AC were interpreted by 4 blinded readers with different interpretative attitudes. Overall, AC improved the diagnostic performance of all readers, particularly the normalcy rate. The degree of improvement depended on interpretative attitude. Readers prone to high sensitivity or with less experience had the greatest gain in the normalcy rate, whereas a reader prone to higher specificity had improvements in sensitivity and specificity but not the normalcy rate. Importantly, improvement of one diagnostic variable was not associated with worsening of other variables.

Conclusion

CT-based AC of SPECT images consistently improved overall diagnostic performance of readers with different interpretive attitudes and experience. CT-based AC is well suited for routine use in clinical practice. (J Nucl Cardiol 2005;12:676-86.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wackers FJTh. Coronary artery disease: exercise stress. Zoghbi GJ, Iskandrian AE. Coronary artery disease: pharmacologic stress. Beller GA. Prognostic applications of myocardial perfusion imaging: exercise stress. Hachamovitch R, Berman DS. Prognostic value of pharmacologic stress: myocardial perfusion scintigraphy and its use in risk stratification. Lidner J, Kramer C, Kaul S. Myocardial perfusion imaging using nonradionuclide techniques. Shaw LJ, Hachamovitch R, Berman DS. Cost effectiveness of myocardial perfusion single-photon-emission computed tomography. Heller GV, Ford-Mukkamala L. Imaging in women. Leppo JA, Dahlberg ST. Imaging for preoperative risk stratification. Rajagopal V, Lauer MS. Nuclear imaging in patients with a history of coronary artery revascularization. Wackers FJTh. Stress myocardial perfusion imaging in patients with diabetes mellitus. In: Zaret BL, Beller GA, editors. Clinical nuclear cardiology: state of the art and future directions. 3rd ed. Mosby; 2005. p. 215–355.

  2. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. American College of Cardiology; American Heart Association; American Society for Nuclear Cardiology. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol 2003;42:1318–33.

    Article  PubMed  Google Scholar 

  3. DePuey G. How to detect and avoid myocardial perfusion SPECT artifacts. J Nucl Med 1994;35:699–702.

    PubMed  Google Scholar 

  4. Desmarais RL, Kaul S, Watson DD, Beller GA. Do false positive thallium-201 scans lead to unnecessary catheterization? Outcome of patients with perfusion defects on quantitative planar thallium- 201 scintigraphy. J Am Coll Cardiol 1993;21:1058–63.

    Article  PubMed  CAS  Google Scholar 

  5. Tan P, Bailey DL, Meikle SR, Eberl S, Fulton RR, Hutton BF. A scanning line source for simultaneous emission and transmission measurements in SPECT. J Nucl Med 1993;34:1752–60.

    PubMed  CAS  Google Scholar 

  6. Bailey DL, Hutton BF, Walker PJ. Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med 1987;28:844–51.

    PubMed  CAS  Google Scholar 

  7. O’Connor M, Kemp KB, Anstett F, Christian P, Ficaro EP, Frey E, et al. A multicenter evaluation of commercial attenuation compensation techniques in cardiac SPECT using phantom models. J Nucl Cardiol 2002;9:361–76.

    Article  PubMed  Google Scholar 

  8. Ficaro EP, Fessler JA, Shreve PD, Kritzman JN, Rose PA, Corbett JR. Simultaneous transmission/emission myocardial perfusion tomography: diagnostic accuracy of attenuation-corrected 99mTcsestamibi single photon emission computed tomography. Circulation 1996;93:463–73.

    PubMed  CAS  Google Scholar 

  9. Kluge, R, Sattler B, Seese A, Knapp WH. Attenuation correction by simultaneous emission-transmission myocardial single-photon emission tomography using a technetium-99m-labelled radiotracer: impact on diagnostic accuracy. Eur J Nucl Med 1997;24:1107–14.

    PubMed  CAS  Google Scholar 

  10. Links JM, Becker LC, Rigo P, Taillefer R, Hanelin L, Anstett F, et al. Combined corrections for attenuation, depth-dependent blur, and motion in cardiac SPECT: a multicenter trial. J Nucl Cardiol 2000;7:414–25.

    Article  PubMed  CAS  Google Scholar 

  11. Hendel RC, Berman DS, Cullom SJ, Follansbee W, Heller GV, Kiat H, et al. Multicenter clinical trial to evaluate the efficacy of correction for photon attenuation and scatter in SPECT myocardial perfusion imaging. Circulation 1999;99:2742–9.

    PubMed  CAS  Google Scholar 

  12. Gallowitsch HJ, Sykora J, Mikosch P, Kresnik E, Unterweger O, Molnar M, et al. Attenuation-corrected thallium-201 single-photon emission tomography using a gadolinium-153 moving line source: clinical value and the impact of attenuation correction on the extent and severity of perfusion abnormalities. Eur J Nucl Med 1998;25:220–8.

    Article  PubMed  CAS  Google Scholar 

  13. Duvernoy CS, Ficaro EP, Karabajakian MZ, Rose PA, Corbet JR. Improved detection of left main coronary artery disease with attenuation-corrected SPECT. J Nucl Cardiol 2000;7:639–48.

    Article  PubMed  CAS  Google Scholar 

  14. Links JM, DePuey EG, Taillefer R, Becker LC. Attenuation correction and gating synergistically improve the diagnostic accuracy of myocardial perfusion SPECT. J Nucl Cardiol 2002;9:183–7.

    Article  PubMed  Google Scholar 

  15. Shotwell M, Singh BM, Fortman C, Bauman BD, Lukes J, Gerson MC. Improved coronary disease detection with quantitative attenuation- corrected Tl-201 images. J Nucl Cardiol 2002;9:52–61.

    Article  PubMed  Google Scholar 

  16. La Croix KJ, Tsui BMW, Hasegawa BH, Brown JK. Investigation of the use of x-ray CT images for attenuation compensation in SPECT. IEEE Trans Nucl Med 1994;41:2793–9.

    Article  Google Scholar 

  17. Kalki K, Blankspoor SC, Brown JK, Hasegawa BH, Dae MW, Chin M, et al. Myocardial perfusion imaging with a combined CT and SPECT system. J Nucl Med 1997;38:1535–40.

    PubMed  CAS  Google Scholar 

  18. Bocher M, Balan A, Krausz Y, Shrem Y, Lonn A, Wilk M, et al. Gamma camera-mounted anatomical x-ray tomography: technology, system characteristics, and first images. Eur J Nucl Med 2000;27:619–27.

    Article  PubMed  CAS  Google Scholar 

  19. Kashiwagi T, Yutani K, Fukuchi M, Naruse H, Iwasaki T, Yokozuka K, et al. Correction of nonuniform attenuation and image fusion in SPECT imaging by means of separate x-ray CT. Ann Nucl Med 2002;16:255–61.

    Article  PubMed  Google Scholar 

  20. Fricke H, Fricke E, Weise R, Kammeier A, Lindner O, Burchert W. A method to remove artifacts in attenuation-corrected myocardial perfusion SPECT Introduced by misalignment between emission scan and CT-derived attenuation maps. J Nucl Med 2004;45:1619–25.

    PubMed  Google Scholar 

  21. Tonge CM, Manoharan M, Lawson RS, Shields RA, Prescott MC. Attenuation correction using low resolution computed tomography images. Nucl Med Commun 2005;26:231–7.

    Article  PubMed  Google Scholar 

  22. Kirac S, Wackers FJ, Liu YH. Validation of the Yale circumferential quantification method using 201Tl and 99mTc: a phantom study. J Nucl Med 2000;41:1436–41.

    PubMed  CAS  Google Scholar 

  23. Liu YH, Lam PT, Sinusas AJ, Wackers FJ. Differential effect of 180 degrees and 360 degrees acquisition orbits on the accuracy of SPECT imaging: quantitative evaluation in phantoms. J Nucl Med 2002;43:1115–24.

    PubMed  Google Scholar 

  24. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 1979:300:1350–8.

    PubMed  CAS  Google Scholar 

  25. De Santis F, Perone Pacifico M. Accounting for historical information in designing experiments: the Bayesian approach. Ann Ist Super Sanita 2004;40:173–9.

    PubMed  Google Scholar 

  26. American Society of Nuclear Cardiology. Updated imaging guidelines for nuclear cardiology procedures, part 1. J Nucl Cardiol 2001;8:G5-G58.

    Article  Google Scholar 

  27. Liu YH, Sinusas AJ, DeMan P, Zaret BL, Wackers FJ. Quantification of SPECT myocardial perfusion images: methodology and validation of the Yale-CQ method. J Nucl Cardiol 1999;6:190–204.

    Article  PubMed  CAS  Google Scholar 

  28. Liu YH, Sinusas AJ, Shi CQ, Shen MY, Dione DP, Heller EN, et al. Quantification of technetium 99m-labeled sestamibi singlephoton emission computed tomography based on mean counts improves accuracy for assessment of relative regional myocardial blood flow: experimental validation in a canine model. J Nucl Cardiol 1996;3:312–20.

    Article  PubMed  CAS  Google Scholar 

  29. Iskandrian AE. Risk assessment of stable patients (panel III). In: Proceedings of the 4th Invitational Wintergreen Conference. Wintergreen, Virginia, USA. July 12–14, 1998. Abstracts. J Nucl Cardiol 1999;6:93–155.

    Article  Google Scholar 

  30. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al; American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. J Nucl Cardiol 2002;9:240–5.

    Article  PubMed  Google Scholar 

  31. Metz CE. Basic principles of ROC analysis. Semin Nucl Med 1978;8:283–98.

    Article  PubMed  CAS  Google Scholar 

  32. Wackers FJ. Attenuation correction, or the emperor’s new clothes? J Nucl Med 1999;40:1310-2 .

    PubMed  CAS  Google Scholar 

  33. Vidal R, Buvat I, Darcourt J, Migneco O, Desvignes P, Baudouy M, et al. Impact of attenuation correction by simultaneous emission/ transmission tomography on visual assessment of 201Tl myocardial perfusion images. J Nucl Med 1999;40:1301–9.

    PubMed  CAS  Google Scholar 

  34. Lee DS, Cheon GJ, Kim KM, Lee MM, Chung JK, Lee MC. Limited incremental diagnostic values of attenuation-noncorrected gating and ungated attenuation correction to rest/stress myocardial perfusion SPECT in patients with an intermediate likelihood of coronary artery disease. J Nucl Med 2000;41:852–9.

    PubMed  CAS  Google Scholar 

  35. Chouraqui P, Livschitz S, Sharir T, Wainer N, Wilk M, Moalem I, et al. Evaluation of attenuation correction method for thallium-201 myocardial perfusion tomographic imaging of patients with low likelihood of coronary artery disease. J Nucl Cardiol 1998;5:369- 77.

    Article  PubMed  CAS  Google Scholar 

  36. Araujo LI, Jiminez-Hoyuela JM, McClellan JR, Lin E, Viggiano J, Alavi A. Improved uniformity in tomographic myocardial perfusion imaging with attenuation correction and enhanced acquisition and processing. J Nucl Med 2000;41:1139–44.

    PubMed  CAS  Google Scholar 

  37. Grossman GB, Garcia EV, Bateman TM, Heller GV, Johnson LL, Folks RD, et al. Quantitative Tc-99m sestamibi attenuationcorrected SPECT: development and multicenter trial validation of myocardial perfusion gender-independent normal database in an obese population. J Nucl Cardiol 2004;11:263–72.

    Article  PubMed  Google Scholar 

  38. Almquist H, Arheden H, Arvidsson AH, Pahlm O, Palmer J. Clinical implication of down-scatter in attenuation-corrected myocardial SPECT. J Nucl Cardiol 1999;6:406–11.

    Article  PubMed  CAS  Google Scholar 

  39. Pretorius PH, Narayanan MV, Dahlberg ST, Leppo JA, King MA. The influence of attenuation and scatter compensation on the apparent distribution of Tc-99m sestamibi in cardiac slices. J Nucl Cardiol 2001;8:356–64.

    Article  PubMed  CAS  Google Scholar 

  40. Harel F, Genin R, Daou D, Lebtahi R, Delahaye N, Helal BO, et al. Clinical impact of combination of scatter attenuation correction, and depth-dependent resolution recovery for 201-Tl studies. J Nucl Med 2001;42:1451–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frans J. Th. Wackers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masood, Y., Liu, Y.H., DePuey, G. et al. Clinical validation of SPECT attenuation correction using x-ray computed tomography—derived attenuation maps: Multicenter clinical trial with angiographic correlation. J Nucl Cardiol 12, 676–686 (2005). https://doi.org/10.1016/j.nuclcard.2005.08.006

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2005.08.006

Key Words

Navigation