Journal of the American Society for Mass Spectrometry

, Volume 21, Issue 3, pp 425-439

First online:

Classical trajectories and RRKM modeling of collisional excitation and dissociation of benzylammonium and tert-butyl benzylammonium ions in a quadrupole-hexapole-quadrupole tandem mass spectrometer

  • Vadim D. KnyazevAffiliated withNational Institute of Standards and Technology, Physical and Chemical Properties DivisionResearch Center for Chemical Kinetics, Department of Chemistry, The Catholic University of America Email author 
  • , Stephen E. SteinAffiliated withNational Institute of Standards and Technology, Physical and Chemical Properties Division


Collision-induced dissociation of the benzylammonium and the 4-tert-butyl benzylammonium ions was studied experimentally in an electrospray ionization quadrupole-hexapole-quadrupole tandem mass spectrometer. Ion fragmentation efficiencies were determined as functions of the kinetic energy of ions and the collider gas (argon) pressure. A theoretical Monte Carlo model of ion collisional excitation, scattering, and decomposition was developed. The model includes simulation of the trajectories of the parent and the product ions flight through the hexapole collision cell, quasiclassical trajectory modeling of collisional activation and scattering of ions, and Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the parent ion decomposition. The results of modeling demonstrate a general agreement between calculations and experiment. Calculated values of ion fragmentation efficiency are sensitive to initial vibrational excitation of ions, scattering of product ions from the collision cell, and distribution of initial ion velocities orthogonal to the axis of the collision cell. Three critical parameters of the model were adjusted to reproduce the experimental data on the dissociation of the benzylammonium ion: reaction enthalpy and initial internal and translational temperatures of the ions. Subsequent application of the model to decomposition of the t-butyl benzylammonium ion required adjustment of the internal ion temperature only. Energy distribution functions obtained in modeling depend on the average numbers of collisions between the ion and the atoms of the collider gas and, in general, have non-Boltzmann shapes.