Skip to main content
Log in

A mathematical model of Doxorubicin treatment efficacy for non-Hodgkin’s lymphoma: Investigation of the current protocol through theoretical modelling results

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Doxorubicin treatment outcomes for non-Hodgkin’s lymphomas (NHL) are mathematically modelled and computationally analyzed. The NHL model includes a tumor structure incorporating mature and immature vessels, vascular structural adaptation and NHL cell-cycle kinetics in addition to Doxorubicin pharmacokinetics (PK) and pharmacodynamics (PD). Simulations provide qualitative estimations of the effect of Doxorubicin on high-grade (HG), intermediate-grade (IG) and low-grade (LG) NHL. Simulation results imply that if the interval between successive drug applications is prolonged beyond a certain point, treatment will be inefficient due to effects caused by heterogeneous blood flow in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agur, Z., 1985. Randomness, synchrony and population persistence. J. Theor. Biol. 112, 677–693.

    MathSciNet  Google Scholar 

  • Agur, Z., Arnon, R., Schechter, B., 1988. Reduction of cytotoxicity to normal tissues by new regimens of phasespecific drugs. Math. Biosci. 92, 1–15.

    Article  MATH  Google Scholar 

  • Alarcón, T., Byrne, H.M., Maini, P.K., 2003. A cellular automaton model for tumor growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274.

    Article  Google Scholar 

  • Alarcń, T., Byrne, H.M., Maini, P.K., Design principle of vascular beds: effects of blood rheology (in preparation).

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D., 1994. Molecular Biology of the Cell. Garland Publishing, New York and London.

    Google Scholar 

  • Al-Ismail, S.A., Whittaker, J.A., Gough, J., 1987. Combination chemotherapy including Epirubicin for the management of non-Hodgkin’s lymphoma. Eur. J. Cancer Clin. Oncol. 23, 1379–1384.

    Article  Google Scholar 

  • Anderson, A.R.A., Chaplain, M.A.J., 1998. Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol. 60, 857–899.

    Article  MATH  Google Scholar 

  • Anderson, A.R.A., Chaplain, M.A.J., Newman, E.L., Steele, R.J.C., Thompson, A.M., 2000. Mathematical modelling of tumor invasion and metastasis. J. Theor. Med. 2, 129–154.

    MATH  Google Scholar 

  • Arakelyan, L., Vainstein, V., Agur, Z., 2002. A computer algorithm describing the process of vessel formation and maturation and its use for predicting the effects of anti-angiogenic and multi-maturation therapy on vascular tumor growth. Angiogenesis 5, 203–214.

    Article  Google Scholar 

  • Barranco, S.C., 1984. Cellular and molecular effects of Adriamycin on dividing and nondividing cells. Pharmacol. Ther. 24, 303–319.

    Article  Google Scholar 

  • Bast, R.C., Kufe, D.W., Pollock, R.E., Weichselbaum, R.R., Holland, J.F., 2000. Cancer Medicine. BC Decker Inc, Canada.

    Google Scholar 

  • Benjamin, L.E., Golijanin, D., Itin, A., Pode, D., Keshet, E., 1999. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest. 103, 157–158.

    Article  Google Scholar 

  • Blagosklonny, M.V., Pardee, A.B., 2002. The restriction point of the cell cycle. Cell Cycle 1, 103–110.

    Google Scholar 

  • Boring, C.C., Squires, T.S., Tong, T., Montgomery, S., 1994. Cancer statistics, 1994. C.A. Cancer J. Clin. 44, 7–26.

    Google Scholar 

  • Brons, P.P., Raemaekers, J.M., Bogman, M.J., van Erp, P.E., Boezeman, J.B., Pennings, A.H., Wessels, H.M, Haanen, C., 1992. Cell cycle kinetics in malignant lymphoma studied with in vivo Iodeoxyuridine administration, nuclear Ki-67 staining, and flow cytometry. Blood 1 80, 2336–2343.

    Google Scholar 

  • Casciari, J.J., Sotirchos, S.V., Sutherland, R.M., 1998. Glucose diffusivity in multicellular tumor spheroids. Cancer Res. 48, 3905–3909.

    Google Scholar 

  • Cojocaru, L., Agur, Z., 1992. A theoretical analysis of interval drug dosing for cell-cycle-phase-specific drugs. Math. Biosci. 109, 85–97.

    Article  MATH  Google Scholar 

  • Couderc, B., Dujols, J.P., Mokhtari, F., Norkowski, J.L., Slawinski, J.C., Schlaifer, D., 2000. The management of adult aggressive non-Hodgkin’s lymphomas. Crit. Rev. Oncol. Hematol. 35, 33–48.

    Google Scholar 

  • Crone, C., Levitt, D.G., 1984. Handbook of Physiology: A Critical, Comprehensive Presentation of Physiological Knowledge and Concepts. American Physiological Society, Bethesda, ML.

    Google Scholar 

  • Deutsch, A., Dormann, S., 2002. Modeling of avascular tumor growth with a hybrid cellular automaton. In Silico Biol. 2, 1–14.

    Google Scholar 

  • Enden, G, Popel, A.S., 1994. A numerical study of plasma skimming in small vascular bifurcations. J. Biomech. Eng. 116, 79–88.

    Google Scholar 

  • Erlanson, M., Lindth, J., Zackrisson, B., Landberg, G., Roos, G., 1995. Cell kinetic analysis of non-Hodgkin’s lymphomas using in vivo Iodeoxyuridine incorporation and flow cytometry. Hematol. Oncol. 13, 207–217.

    Google Scholar 

  • Hackbusch, W., 1985. Multigrid Methods and Applications. Springer, Berlin.

    Google Scholar 

  • Hardman, J.G., Limbird, L.E., Gilman, A.G., 2001. The Pharmacological Basis of Therapeutics. McGraw-Hill Companies.

  • Honda, H., Yoshizato, K., 1997. Formation of branching pattern of blood vessels in the wall of the avian yolk sac studied by computer simulation. Dev. Growth Differ. 39, 581–589.

    Article  Google Scholar 

  • Jain, R.K., 2001. Delivery of molecular and cellular medicine to solid tumours. Adv. Drug. Deliv. Rev. 46, 146–168.

    Article  Google Scholar 

  • Konerding, M.A., Fait, E., Gaumann, A., 2001. 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br. J. Cancer. 84, 1354–1362.

    Article  Google Scholar 

  • Kwok, T.T., Twentyman, P.R., 1985. The response to cytotoxic drugs of EMT6 cells treated either as intact or disaggregated spheroid. Br. J. Cancer. 51, 211–218.

    Google Scholar 

  • Lankelma, J., Luque, R.F., Dekker, H., Schinkel, W., Pinedo, H., 2000. A mathematical model of drug transport in human breast cancer. Microvasc. Res. 59, 149–161.

    Article  Google Scholar 

  • Lapela, M., Leskinen, S., Minn, H.R., Lindholm, P., Klemi, P.J., Soderstrom, K.O., Bergman, J., Haaparanta, M., Ruotsalainen, U., Solin, O., 1995. Increased glucose metabolism in untreated non-Hodgkin’s lymphoma: a study with positron emission tomography and fluorine-19-fluorodeoxyglucose. Blood 1 86, 3522–3527.

    Google Scholar 

  • Lepage, E., Gisselbrecht, C., Haioun, C., Sebban, C., Tilly, H., Bosly, A., Morel, P., Herbrecht, R., Reyes, F., Coiffier, B., 1993. Prognostic significance of received relative dose intensity in non-Hodgkin’s lymphoma patients: application to LNH-87 protocol. The GELA. (Groupe d’Etude des Lymphomes de l’Adulte). Ann. Oncol. 4, 651–656.

    Google Scholar 

  • Liotta, L.A., Saidel, G.M., Kleinerman, J., 1977. Diffusion model of tumor vascularization and growth. Bull. Math. Biol. 39, 117–128.

    Article  Google Scholar 

  • McCormick, S.F., 1987. Multigrid Methods. SIAM, Philadelphia.

    MATH  Google Scholar 

  • McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J., Sherratt, J.A., 2002. Mathematical modelling of flow through vascular networks: Implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64, 673–702.

    Article  Google Scholar 

  • Nagai, K., Nagasawa, K., Sadzuka, Y., Tsujimoto, M., Takara, K., Ohnishi, N., Yokoyama, T., Fujimoto, S., 2002. Relationships between the in vitro cytotoxicity and transport characteristics of Pirarubicin and Doxorubicin in M5076 ovarian sarcoma cells, and comparison with those in Ehrlich ascites carcinoma cells. Cancer Chemother. Pharmacol. 49, 244–250.

    Article  Google Scholar 

  • Orme, M.E., Chaplain, M.A.J., 1996. A mathematical model of vascular tumour growth and invasion. Math. Comput. Modelling 23, 43–60.

    Article  MathSciNet  MATH  Google Scholar 

  • Patel, A.A., Gawlinski, E.T., Lemieux, S.K., Gatenby, R.A., 2001. A cellular automaton model of early tumor growth and invasion. J. Theor. Biol. 7 213, 315–331.

    Article  MathSciNet  Google Scholar 

  • Pries, A.R., Secomb, T.W., Gaehtgens, P., 1998. Structural adaptation and stability of microvascular networks: theory and simulations. Am. J. Physiol. 275, H349–H360.

    Google Scholar 

  • Pries, A.R., Secomb, T.W., Gessner, T., Sperandio, M.B., Gross, J.F., Gaehtgens, P., 1994. Resistance to blood flow in microvessels in vivo. Circ. Res. 75, 904–915.

    Google Scholar 

  • Stokke, T., Holte, H., Smedshammer, L., Smeland, E.B., Kaalhus, O., Steen, H.B., 1998. Proliferation and apoptosis in malignant and normal cells in B-cell non-Hodgkin’s lymphomas. Br. J. Cancer 77, 1832–1838.

    Google Scholar 

  • Willemse, F., Nap, M., de Bruijn H.W.A., Hollema, H., Morphological parameters of vasculature in tumor marker biodynamics. Anal. Quant. Histol. (in press).

  • Wilson, J.D, Foster, D.W., 1992. Williams Textbook of Endocrinology. W.B. Saunders Company.

  • Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J., Holash, J., 2000. Vascular specific growth factors and blood vessel formation. Nature 407, 242–248.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Agur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribba, B., Marron, K., Agur, Z. et al. A mathematical model of Doxorubicin treatment efficacy for non-Hodgkin’s lymphoma: Investigation of the current protocol through theoretical modelling results. Bull. Math. Biol. 67, 79–99 (2005). https://doi.org/10.1016/j.bulm.2004.06.007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.06.007

Keywords

Navigation