Skip to main content
Log in

A computational model of the mechanics of growth of the villous trophoblast bilayer

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present a computational model of the mechanics of growth of the trophoblast bilayer in a chorionic villous, the basic structure of the placenta. The placental trophoblast is modeled as a collection of elastic neutrally buoyant membranes (mononuclear cytotrophoblasts and multinucleated syncytiotrophoblast) filled with a viscous, incompressible fluid (cytoplasm) with sources of growth located inside cells. We show how this complex, dynamic fluid-based structure can be modeled successfully using the immersed boundary method. The results of our research presented here include simulations of two processes—cell proliferation and cell fusion which both play a crucial role in the growth and development of the trophoblast tissue. We present the computed results of simulations of both processes running independently as well as simultaneously, along with comparisons with clinically obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson (1994). Molecular Biology of the Cell, Garland Publishing.

  • Arthurs, K. M., L. C. Moore, C. S. Peskin, E. B. Pitman and H. E. Layton (1998). Modeling arteriolar flow and mass transport using the immersed boundary method. J. Comput. Phys. 147, 402–440.

    Article  MathSciNet  MATH  Google Scholar 

  • Batchelor, G. K. (1967). An Introduction to Fluid Dynamics, Cambridge Press.

  • Benirschke, K. and P. Kaufmann (1995). Pathology of the Human Placenta, Springer.

  • Bottino, D. C. (1998). Modeling viscoelastic networks and cell deformation in the context of the immersed boundary method. J. Comput. Phys. 147, 86–113.

    Article  MATH  Google Scholar 

  • Bottino, D. C. and L. J. Fauci (1998). A computational model of ameboid deformation and locomotion. Eur. Biophys. J. 27, 532–539.

    Article  Google Scholar 

  • Boyd, J. D. and W. J. Hamilton (1970). The Human Placenta, Cambridge: W. Heffer & Sons, Ltd.

    Google Scholar 

  • Chicurel, M. E., Ch. S. Chen and D. E. Ingber (1998). Cellular control lies in the balance of forces. Curr. Opin. Cell Biol. 10, 232–239.

    Article  Google Scholar 

  • Cortez, R. and M. Minion (2000). The Blob projection method for the immersed boundary problems. J. Comput. Phys. 161, 428–453.

    Article  MathSciNet  MATH  Google Scholar 

  • Davidson, L. A., M. A. R. Koehl, R. Keller and G. F. Oster (1995). How do see urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination. Development 121, 2005–2018.

    Google Scholar 

  • Dillon, R. H. and L. J. Fauci (2001). A fluid-structure interaction model of ciliary beating, in Computational Modeling in Biological Fluid Dynamics, The IMA Volumes in Mathematics and its Applications 124, L. J. Fauci and S. Gueron (Eds), Springer, pp. 71–80.

  • Dillon, R. and L. Fauci (2000a). A microscale model of bacterial and biofilm dynamics in porus media. Biotechnol. Bioeng. 68, 536–547.

    Article  Google Scholar 

  • Dillon, R. and L. Fauci (2000b). An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating. J. Theor. Biol. 207, 415–430.

    Article  Google Scholar 

  • Dillon, R., L. J. Fauci, A. Fogelson and D. Gaver (1996). Modeling biofilm processes using the immersed boundary method. J. Comput. Phys. 129, 57–73.

    Article  MATH  Google Scholar 

  • Dillon, R., L. J. Fauci and D. Gaver III (1995). Microscale model of bacterial swimming, chemotaxis and substrate transport. J. Theor. Biol. 177, 325–340.

    Article  Google Scholar 

  • Dillon, R. and H. G. Othmer (1999). A mathematical model for outgrowth and spatial pattering of the vertebrate limb bud. J. Theor. Biol. 197, 295–330.

    Article  Google Scholar 

  • Fauci, L. J. (1990). Interaction of oscillating filaments: a computational study. J. Comput. Phys. 86, 294–313.

    Article  MATH  MathSciNet  Google Scholar 

  • Fauci, L. J. and A. L. Fogelson (1993). Truncated Newton Method and the Modeling of Complex Immersed Elastic Structures. Communication on Pure and Applied Mathematics, XLVI, pp. 787–818.

  • Fauci, L. F. and C. S. Peskin (1988). A computational model of aquatic animal locomotion. J. Comput. Phys. 77, 85–107.

    Article  MathSciNet  MATH  Google Scholar 

  • Fogelson, A. L. (1984). A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting. J. Comput. Phys. 56, 111–134.

    Article  MATH  MathSciNet  Google Scholar 

  • Honore, L. H., F. J. Dill and B. J. Poland (1976). Placental morphology in spontaneous human abortuses with normal and abnormal karyotypes. Teratology 14, 151–166.

    Article  Google Scholar 

  • Jung, E. and C. S. Peskin (2001). 2-D simulations of valveless pumping using the immersed boundary method. SIAM J. Sci. Comput. 23, 19–45.

    Article  MathSciNet  MATH  Google Scholar 

  • Kliman, H. J. (1999). Trophoblast to Human Placenta, Encyclopedia of Reproduction 4, E. Knobil and J. D. Neill (Eds), Academic Press.

  • Kliman, H. J., M. A. Feinman and J. F. Strauss III (1987). Differentiation of human cytotrophoblast into syncytiotrophoblast in culture. Trophoblast Res. 4, 407–421.

    Google Scholar 

  • Kliman, H. J. and L. French (2001). Trophoblast inclusions are associated with karyotypic abnormalities. 21st Annual Meeting of the Society for Maternal-Fetal Medicine, Reno, NV.

  • Kliman, H. J., J. E. Nestler, E. Sermasi, J. M. Sanger and J. F. Strauss III (1986). Purification, characterization and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology 118, 1567–1582.

    Article  Google Scholar 

  • Kliman, H. J. and L. Segel (2003). The placenta may predict the baby. J. Theor. Biol. 225, 143–145.

    Article  MathSciNet  Google Scholar 

  • Kliman, H. J., L. Segel, L. Fauci and R. Cortez (2001). Model for the formation of trophoblast inclusions in chorionic villi. 21st Annual Meeting of the Society for Maternal-Fetal Medicine, Reno, NV.

  • Lewis, S. H. and E. Perrin (1999). Pathology of the Placenta, Churchill Livingstone.

  • Mayhew, T. M. (2001). Villous trophoblast of human placenta: a coherent view of its turnover, repair and contribution to villous development and maturation. Histol. Histopathol. Cell. Mol. Biol. 16, 1213–1224.

    Google Scholar 

  • McQueen, D. M. and C. S. Peskin (1989). A three-dimensional computational method for blood flow in the heart. II. Contractible fibers. J. Comput. Phys. 82, 289–297.

    Article  MathSciNet  MATH  Google Scholar 

  • Novak, R., D. Agamanolis, S. Dasu, H. Igel, M. Platt, H. Robinson and B. Shehata (1998). Histologic analysis of placental tissue in first trimester abortions. Pediatr. Pathol. 8, 477–482.

    Google Scholar 

  • Peskin, C. S. (1972). Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10, 252–271.

    Article  MATH  MathSciNet  Google Scholar 

  • Peskin, C. S. (1977). Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220–252.

    Article  MATH  MathSciNet  Google Scholar 

  • Peskin, C. S. (2002). The immersed boundary method. Acta Numerica, 1–39.

  • Peskin, C. S. and D. M. McQueen (1995). A general method for computer simulation of biological systems interacting with fluids, in Biological Fluid Dynamics, vol. 19, C. P. Ellington and T. J. Pedley (Eds), Cambridge Press, pp. 265–276.

  • Peskin, C. S. and D. M. McQueen (1989). A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81, 327–405.

    Article  MathSciNet  Google Scholar 

  • Rejniak, K. A. (2002). A computational model of the mechanics of growth of a trophoblast tissue, PhD thesis, Tulane University, New Orleans, USA.

    Google Scholar 

  • Silvestre, E., V. Cusi, M. Borras and J. Anitch (1996). Cytogenetic and morphologic findings in chorionic villi from spontaneous abortions. Birth Defects; Original Article Series 30, 353–357.

    Google Scholar 

  • Van Essen, D. C. (1997). A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 285, 313–318.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna A. Rejniak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rejniak, K.A., Kliman, H.J. & Fauci, L.J. A computational model of the mechanics of growth of the villous trophoblast bilayer. Bull. Math. Biol. 66, 199–232 (2004). https://doi.org/10.1016/j.bulm.2003.06.001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.06.001

Keywords

Navigation