Tracking radical migration in large hydrogen deficient peptides with covalent labels: Facile movement does not equal indiscriminate fragmentation

Article

DOI: 10.1016/j.jasms.2009.02.009

Cite this article as:
Ly, T. & Julian, R.R. J Am Soc Mass Spectrom (2009) 20: 1148. doi:10.1016/j.jasms.2009.02.009

Abstract

Photodissociation of iodo-tyrosine modified peptides yields localized radicals on the tyrosine side chain, which can be further dissociated by collisional activation. We have performed extensive experiments on model peptides, RGYALG, RGYG, and their derivatives, to elucidate the mechanisms underlying backbone fragmentation at tyrosine. Neither acetylation nor deuteration of the tyrosyl phenolic hydrogen significantly affects backbone fragmentation. However, deuterium migration from the tyrosyl β carbon is concomitant with cleavage at tyrosine. Substitution of tyrosine with 4-hydroxyphenylglycine, which does not have β hydrogens, results in almost complete elimination of backbone fragmentation at tyrosine. These results suggest that a radical situated on the β carbon is required for a-type fragmentation in hydrogen-deficient radical peptides. Replacement of the αH of the residue adjacent to tyrosine with methyl groups results in significant diminution of backbone fragmentation. The initial radical abstracts an αH from the adjacent amino acid, which is poised to “rebound” and abstract the βH of tyrosine through a six-membered transition-state. Subsequent β-scission leads to the observed a-type backbone fragment. These results from deuterated peptides clearly reveal that radical migration in peptides can occur and that multiple migrations are not infrequent. Counterintuitively, close examination of all experimental results reveals that the probability for fragmentation at a particular residue is well correlated with thermodynamic radical stability. A-type fragmentation therefore appears to be most likely when favorable thermodynamics are combined with the relevant kinetic control. These results are consistent with ab initio calculations, which demonstrate that barriers to migration are significantly smaller in magnitude than probable dissociation thresholds.

Download to read the full article text

Supplementary material

13361_2011_200601148_MOESM1_ESM.pdf (549 kb)
Supplementary material, approximately 562 KB.

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CaliforniaRiversideUSA

Personalised recommendations