Abercrombie, M. (1970). Contact inhibition in tissue culture.

*In vitro*
**6**, 128–140.

Google ScholarAdam, J. A. (1986). A simplified mathematical model of tumor growth.

*Math. Biosci.*
**81**, 229–244.

MATHCrossRefGoogle ScholarAdam, J. A. (1987a). A mathematical model of tumor growth. ii. Effects of geometry and spatial uniformity on stability.

*Math. Biosci.*
**86**, 183–211.

MATHCrossRefGoogle ScholarAdam, J. A. (1987b). A mathematical model of tumor growth. iii. Comparison with experiment.

*Math. Biosci.*
**86**, 213–227.

MATHCrossRefGoogle ScholarAdam, J. A. (1989). Corrigendum: a mathematical model of tumor growth by diffusion.

*Math. Biosci.*
**94**, 155.

MathSciNetCrossRefGoogle ScholarAdam, J. A. and N. Bellomo (1997).

*A Survey of Models for Tumor-Immune System Dynamics*, Boston: Birkhauser.

MATHGoogle ScholarAdam, J. A. and S. A. Maggelakis (1989). Mathematical models of tumor growth. iv. Effects of a necrotic core.

*Math. Biosci.*
**97**, 121–136.

CrossRefMATHGoogle ScholarAdam, J. A. and S. A. Maggelakis (1990). Diffusion regulated characteristics of a spherical prevascular carcinoma.

*Bull. Math. Biol.*
**52**, 549–582.

CrossRefMATHGoogle ScholarAdam, J. A. and R. D. Noren (2002). Equilibrium model of a vascularized spherical carcinoma.

*J. Math. Biol.*
**31**, 735–745.

MathSciNetCrossRefGoogle ScholarAdam, J. A. and J. C. Panetta (1995). A simple mathematical model and alternative paradigm for certain chemotherapeutic regimens.

*Math. Comput. Modelling*
**22**, 49–60.

MathSciNetCrossRefMATHGoogle ScholarAlberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter (2002).

*Molecular Biology of the Cell*, 4th edn, New York: Garland Science.

Google ScholarAmbrosi, D. and F. Mollica (2002). On the mechanics of a growing tumor.

*Int. J. Eng. Sci.*
**40**, 1297–1316.

MathSciNetCrossRefGoogle ScholarAmbrosi, D. and F. Mollica (2003). Numerical simulation of the growth of a multicellular spheroid, in

*Second M.I.T. Conference on Computational Fluid and Solid Mechanics*, UK: Elsevier Ltd, pp. 1608–1612.

Google ScholarAmbrosi, D. and L. Preziosi. On the closure of mass balance models for tumour growth. *Math. Models Methods Appl. Sci.* (in press).

Anderson, A. R. A. and M. A. J. Chaplain (1998). Continuous and discrete mathematical models of tumour-induced angiogenesis.

*Bull. Math. Biol.*
**60**, 857–899.

CrossRefMATHGoogle ScholarAnderson, A. R. A., M. A. J. Chaplain, R. J. Steele, E. L. Newman and A. Thompson (2000). Mathematical modelling of tumour invasion and metastasis.

*J. Theor. Med.*
**2**, 129–154.

MATHGoogle ScholarAraujo, R. P. and D. L. S. McElwain. A linear-elastic model of anisotropic tumour growth. *Eur. J. Appl. Math.* (in press-a).

Araujo, R. P. and D. L. S. McElwain. The nature of the stresses induced during tissue growth. *Appl. Math. Lett.* (in press-b).

Araujo, R. P. and D. L. S. McElwain. A mixture theory for the genesis of residual stresses in growing tissues. *SIAM J. Appl. Math.* (submitted-a).

Araujo, R. P. and D. L. S. McElwain. New insights into vascular collapse and growth dynamics in solid tumours. *J. Theor. Biol.* (submitted-b).

Araujo, R. P. and D. L. S. McElwain (2003a). An anisotropic model of vascular tumor growth: implications for vascular collapse, in

*Second M.I.T. Conference on Computational Fluid and Solid Mechanics*, Oxford, UK: Elsevier Ltd, pp. 1613–1616.

Google ScholarAraujo, R. P. and D. L. S. McElwain (2003b). The genesis of residual stresses and vascular collapse in solid tumours, in *Proceedings of the Sixth Engineering Mathematics and Applications Conference*, Engineering Mathematics Group, ANZIAM, pp. 1–6.

Arve, B. H. and A. I. Liapis (1988). Oxygen tension in tumors predicted by a diffusion with absorption model involving a moving free boundary.

*Math. Comput. Modelling*
**10**, 159–174.

CrossRefMATHGoogle ScholarAustralian Institute of Health and Welfare (AIHM). Cancer in Australia 1999. Available from

http://www.aihw.gov.au/publications/can/ca99/.

Aznavoorian, S., M. L. Stracke, H. Krutzsch, E. Schiffman and L. A. Liotta (1990). Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumour cells.

*J. Cell Biol.*
**110**, 1427–1438.

CrossRefGoogle ScholarBarr, L. C. (1989). The encapsulation of tumours.

*Clin. Exp. Metastasis*
**7**, 1813–1816.

CrossRefGoogle ScholarBarr, L. C., R. L. Carter and A. J. S. Davies (1988). Encapsulation of tumours as a modified wound healing response.

*Lancet*
**ii**, 135–137.

CrossRefGoogle ScholarBaxter, L. T. and R. K. Jain (1989). Transport of fluid and macromolecules in tumors: I. Role of interstitial pressure and convection.

*Microvasc. Res.*
**37**, 77–104.

CrossRefGoogle ScholarBaxter, L. T. and R. K. Jain (1990). Transport of fluid and macromolecules in tumors: Ii. Role of heterogeneous perfusion and lymphatics.

*Microvasc. Res.*
**40**, 246–263.

CrossRefGoogle ScholarBaxter, L. T. and R. K. Jain (1991). Transport of fluid and macromolecules in tumors: Iv. A microscopic model of the perivascular distribution.

*Microvasc. Res.*
**41**, 252–272.

CrossRefGoogle ScholarBaxter, L. T. and R. K. Jain (1996). Pharmacokinetic analysis of microscopic distribution of enzyme-conjugated antibodies and prodrugs: comparison with experimental data.

*Br. J. Cancer*
**73**, 447–456.

Google ScholarBerenblum, L. (1970). The nature of tumour growth, in *General Pathology*, 4th edn, H. E. W. Florey (Ed.), Lloyd-Luke.

Bertuzzi, A., A. Fasano and A. Gandolfi (2003). Cell kinetics in tumour cords studied by a model with variable cell cycle length, in *Second M.I.T. Conference on Computational Fluid and Solid Mechanics*, pp. 1631–1633.

Bertuzzi, A., A. Fasano, A. Gandolfi and D. Marangi (2002). Cell kinetics in tumour cords studied by a model with variable cell cycle length.

*Math. Biosci.*
**177 & 178**, 103–125.

MathSciNetCrossRefGoogle ScholarBertuzzi, A. and A. Gandolfi (2000). Cell kinetics in a tumour cord.

*J. Theor. Biol.*
**204**, 587–599.

CrossRefGoogle ScholarBoucher, Y. and R. K. Jain (1992). Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse.

*Cancer Res.*
**52**, 5110–5114.

Google ScholarBoucher, Y., J. M. Kirkwoord, D. Opacic, M. Desantis and R. K. Jain (1991). Interstitial hypertension in superficial metastatic melanomas in humans.

*Cancer Res.*
**51**, 6691–6694.

Google ScholarBoucher, Y., M. Leunig and R. K. Jain (1996). Tumor angiogenesis and interstitial hypertension.

*Cancer Res.*
**56**, 4264–4266.

Google ScholarBowen, R. M. (1982). Compressible porous mediamodels by use of the theory of mixtures.

*Int. J. Eng. Sci.*
**20**, 697–735.

MATHCrossRefGoogle ScholarBowen, R. M. (1976). Theory of mixtures, in

*Continuum Physics*, A. C. Eringen (Ed.), vol. 3, New York: Academic Press.

Google ScholarBowen, R. M. (1980). Incompressible porous media models by use of the theory of mixtures.

*Int. J. Eng. Sci.*
**18**, 1129–1148.

MATHCrossRefGoogle ScholarBowen, R. M. and J. C. Wiese (1969). Diffusion in mixtures of elastic materials.

*Int. J. Eng. Sci.*
**7**, 689–722.

CrossRefMATHGoogle ScholarBreward, C. J. W., H. M. Byrne and C. E. Lewis (2002). The role of cell-cell interactions in a two-phase model for avascular tumour growth.

*J. Math. Biol.*
**45**, 125–152.

MathSciNetCrossRefMATHGoogle ScholarBreward, C. J. W., H. M. Byrne and C. E. Lewis (2003). A multiphase model describing vascular tumour growth.

*Bull. Math. Biol.*
**65**, 609–640.

CrossRefGoogle ScholarBritton, N. F. and M. A. J. Chaplain (1992). A qualitative analysis of some models of tissue growth.

*Math. Biosci.*
**113**, 77–89.

CrossRefGoogle ScholarBrody, S. (1945).

*Bioenergetics and Growth*, New York: Reinhold Publ. Co.

Google ScholarBrown, N. J., C. A. Staton, G. R. Rodgers, K. P. Corke, J. C. E. Underwood and C. E. Lewis (2002). Fibrinogen e fragment selectively disrupts the vasculature and inhibits the growth of tumours in a syngeneic murine model.

*Br. J. Cancer*
**86**, 1813–1816.

CrossRefGoogle ScholarBullough, W. S. (1965). Mitotic and functional homeostasis: a speculative review.

*Cancer Res.*
**25**, 1683–1727.

Google ScholarBullough, W. S. and J. U. R. Deol (1971). The pattern of tumour growth.

*Symp. Soc. Exp. Biol.*
**25**, 255–275.

Google ScholarBurton, A. C. (1966). Rate of growth of solid tumours as a problem of diffusion.

*Growth*
**30**, 157–176.

Google ScholarByrne, H. B., J. R. King, D. L. S. McElwain and L. Preziosi. A two-phase model of solid tumour growth. *Appl. Math. Lett.* (in press).

Byrne, H. M. (1997a). The effect of time delays on the dynamics of avascular tumour growth.

*Math. Biosci.*
**144**, 83–117.

MATHMathSciNetCrossRefGoogle ScholarByrne, H. M. (1997b). The importance of intercellular adhesion in the development of carcinomas.

*IMA J. Math. Appl. Med. Biol.*
**14**, 305–323.

MATHGoogle ScholarByrne, H. M. (1999a). Using mathematics to study solid tumour growth, in *Proceedings of the 9th General Meetings of European Women in Mathematics*, pp. 81–107.

Byrne, H. M. (1999b). A weakly nonlinear analysis of a model of avascular solid tumour growth.

*J. Math. Biol.*
**39**, 59–89.

MATHMathSciNetCrossRefGoogle ScholarByrne, H. M. and M. A. J. Chaplain (1995). Growth of nonnecrotic tumours in the presence and absence of inhibitors.

*Math. Biosci.*
**130**, 151–181.

CrossRefMATHGoogle ScholarByrne, H. M. and M. A. J. Chaplain (1996a). Growth of necrotic tumours in the presence and absence of inhibitors.

*Math. Biosci.*
**135**, 187–216.

CrossRefMATHGoogle ScholarByrne, H. M. and M. A. J. Chaplain (1996b). Modelling the role of cell-cell adhesion in the growth and development of carcinomas.

*Math. Comput. Modelling*
**24**, 1–17.

CrossRefMATHGoogle ScholarByrne, H. M. and M. A. J. Chaplain (1997). Free boundary value problems associated with the growth and development of multicellular spheroids.

*Eur. J. Appl. Math.*
**8**, 639–658.

MathSciNetCrossRefMATHGoogle ScholarByrne, H. M. and M. A. J. Chaplain (1998). Necrosis and apoptosis: distinct cell loss mechanisms in a mathematical model of avascular tumour growth.

*J. Theor. Med.*
**1**, 223–235.

MATHCrossRefGoogle ScholarByrne, H. M. and S. A. Gourley (1997). The role of growth factors in avascular tumour growth.

*Math. Comput. Modelling*
**4**, 35–55.

MathSciNetCrossRefGoogle ScholarByrne, H. M. and L. Preziosi. Modelling solid tumor growth using the theory of mixtures. *IMA J. Appl. Math. Lett.* (in press).

Casciari, J. J., S. V. Sotirchos and R. M. Sutherland (1984). Identification of a tumour inhibitory factor in rat ascites fluid.

*Biochem. Biophys. Res. Comm.*
**119**, 76–82.

CrossRefGoogle ScholarChance, B. (1957). Cellular oxygen requirements.

*Fed. Proc.*
**16**, 671–680.

Google ScholarChaplain, M. A. J. (1993). The development of a spatial pattern in a model for cancer growth, in *Experimental and Theoretical Advances in Biological Pattern Formation*, H. G. Othmer *et al.* (Eds), Plenum Press.

Chaplain, M. A. J. (1996). Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modeling of the stages of tumour development.

*Math. Comput. Modelling*
**23**, 47–87.

MATHCrossRefGoogle ScholarChaplain, M. A. J., D. L. Benson and P. K. Maini (1994). Nonlinear diffusion of a growth inhibitory factor in multicell spheroids.

*Math. Biosci.*
**121**, 1–13.

CrossRefMATHGoogle ScholarChaplain, M. A. J. and N. F. Britton (1993). On the concentration profile of a growth inhibitory factor in multicell spheroids.

*Math. Biosci.*
**115**, 233–245.

CrossRefMATHGoogle ScholarChaplain, M. A. J. and L. Preziosi. Macroscopic modelling of the growth and development of tumor masses. *Math. Models Methods Appl. Sci.* (in press).

Chaplain, M. A. J. and B. D. Sleeman (1993). Modelling the growth of solid tumours and incorporating a method for their classification using nonlinear elasticity theory.

*J. Math. Biol.*
**31**, 431–473.

MathSciNetCrossRefMATHGoogle ScholarChen, C. Y., H. M. Byrne and J. R. King (2001). The influence of growth-induced stress from the surrounding medium on the development of multicell spheroids.

*J. Math. Biol.*
**43**, 191–220.

MathSciNetCrossRefMATHGoogle ScholarChen, Y.-C. and A. Hoger (2000). Constitutive functions of elastic materials in finite growth and deformation.

*J. Elasticity*
**59**, 175–193.

CrossRefMATHGoogle ScholarClarke, R., R. G. Dickson and N. Brunner (1988). The process of malignant progression in human breast cancer.

*Cancer Genet. Cytogenet.*
**14**, 125–134.

Google ScholarCowin, S. C. (1996). Strain or deformation rate dependent finite growth in soft tissues.

*J. Biomech.*
**29**, 647–649.

CrossRefGoogle ScholarCramer, W. (1934). The prevention of cancer.

*Lancet*
**1**, 15.

Google ScholarCristini, V., J. Lowengrub and Q. Nie (2003). Nonlinear simulation of tumor growth.

*J. Math. Biol.*
**46**, 191–224.

MathSciNetCrossRefMATHGoogle ScholarCruveilier, (1829).

*Anatomie Pathologique du Corps Humain*, Paris: Bailliere.

Google ScholarCui, S. (2002). Analysis of a mathematical model for the growth of tumors under the action of external inhibitors.

*J. Math. Biol.*
**44**, 395–426.

MATHMathSciNetCrossRefGoogle ScholarCui, S. and A. Friedman (2000). Analysis of a mathematical model of the effect of inhibitors on the growth of tumors.

*Math. Biosci.*
**164**, 103–137.

MathSciNetCrossRefMATHGoogle ScholarDanova, M., A. Riccardi and G. Mazzini (1990). Cell cycle-related proteins and flow cytometry.

*Haematologica*
**75**, 252–264.

Google ScholarDarzynkiewicz, Z. (1995). Apoptosis in antitumour strategies: modulation of cell-cycle or differentiation.

*J. Cell. Biochem.*
**58**, 151–159.

CrossRefGoogle ScholarDavid, P. D.

*et al.* (2002). Zd6126: A novel vascular-targeting agent that causes selective destruction of tumor vasculature.

*Cancer Res.*
**62**, 7247–7253.

Google ScholarDe Angelis, E. and L. Preziosi (2000). Advection-diffusion models for solid tumour evolution in vivo and related free boundary problem.

*Math. Models Methods Appl. Sci.*
**10**, 379–408.

MathSciNetCrossRefMATHGoogle ScholarDeakin, A. S. (1975). Model for the growth of a solid in vitro tumour.

*Growth*
**39**, 159–165.

Google ScholarDorie, M. J., R. F. Kallman, D. F. Rapacchietta, D. van Antwerp and Y. R. Huang (1982). Migration and internalization of cells and polystyrene microspheres in tumour cell spheroids.

*Exp. Cell Res.*
**141**, 201–209.

CrossRefGoogle ScholarDorie, M. J., R. F. Kallman and M. A. Coyne (1986). Effect of cytochalasin b, nocodazole and irradiation on migration and internalization of cells and microspheres in tumour cell spheroids.

*Exp. Cell Res.*
**166**, 370–378.

CrossRefGoogle ScholarDrew, D. A. (1971). Averaged field equations for two-phase media.

*Stud. Appl. Math.*
**50**, 205–231.

MATHGoogle ScholarDrew, D. A. (1976). Two-phase flows: constitutive equations for lift and Brownian motion and some basic flows.

*Arch. Rat. Mech. Anal.*
**62**, 149–163.

MATHMathSciNetCrossRefGoogle ScholarDrew, D. A. and S. L. Passman (1999).

*Theory of Multicomponent Fluids*, New York: Springer.

Google ScholarDrew, D. A. and L. A. Segel (1971). Averaged equations for two-phase flows.

*Stud. Appl. Math.*
**50**, 205–231.

MATHGoogle ScholarDurand, R. E. (1976). Cell cycle kinetics in an in vitro tumor model.

*Cell Tissue Kinet.*
**9**, 403–412.

Google ScholarEddy, H. A. and G. W. Casarett (1972). Development of the vascular system in the hamster malignant neurilemmoma.

*Microvasc. Res.*
**6**, 63–82.

CrossRefGoogle ScholarFisher, R. A. (1937). The wave of advance of advantageous genes.

*Ann. Eugenics*
**7**, 355–369.

MATHGoogle ScholarFitt, A. D., P. D. Howell, J. R. King, C. P. Please and D. W. Schwendeman (2002). Multiphase flow in a roll press nip.

*Eur. J. Appl. Math.*
**13**, 225–259.

MathSciNetCrossRefMATHGoogle ScholarFolkman, J. (1974). Tumor angiogenesis.

*Adv. Cancer Res.*
**19**, 331–358.

CrossRefGoogle ScholarFolkman, J., P. Cole and S. Zimmerman (1966). Tumor behavior in isolated perfused organs: in vitro growth and metastases of biopsy material in rabbit thyroid and canine intestinal segment.

*Ann. Surg.*
**164**, 491–502.

Google ScholarFolkman, J. and M. Hochberg (1973). Self-regulation of growth in three dimensions.

*J. Exp. Med.*
**138**, 745–753.

CrossRefGoogle ScholarFowler, A. C. (1997). *Mathematical Models in the Applied Sciences*, Cambridge University Press.

Franks, S. J., H. M. Byrne, J. R. King, J. C. E. Underwood and C. E. Lewis (2003). Modelling the early growth of ductal carcinoma in situ of the breast.

*J. Math. Biol.*
**47**, 424–452.

MathSciNetCrossRefMATHGoogle ScholarFreyer, J. P., P. L. Schor and A. G. Saponara (1988). Partial purification of a protein-growth inhibitor from multicell spheroids.

*Biochem. Biophys. Res. Comm.*
**152**, 463–468.

CrossRefGoogle ScholarFroese, G. (1962). The respiration of ascites tumour cells at low oxygen concentrations.

*Biochim. Biophys. Acta*
**57**, 509–519.

CrossRefGoogle ScholarFung, Y. C. (1991). What are the residual stresses doing in our blood vessels?

*Ann. Biomed. Eng.*
**19**, 237–249.

MathSciNetGoogle ScholarFung, Y. C. (1993).

*Biomechanics: Mechanical Properties of Living Tissues*, New York: Springer.

Google ScholarGatenby, R. A. (1991). Population ecology issues in tumor growth.

*Cancer Res.*
**51**, 2542–2547.

Google ScholarGatenby, R. A. (1995a). Models of tumor-host interactions as competing populations: implications for tumor biology and treatment.

*J. Theor. Biol.*
**176**, 447–455.

CrossRefGoogle ScholarGatenby, R. A. (1995b). The potential role of transformation-induced metabolic changes in tumor-host interaction.

*Cancer Res.*
**55**, 4151–4156.

Google ScholarGatenby, R. A. (1996a). Altered glucose metabolism and the invasive tumor phenotype: insights provided through mathematical models.

*Int. J. Oncol.*
**8**, 597–601.

Google ScholarGatenby, R. A. (1996b). Application of competition theory to tumour growth: implications for tumour biology and treatment.

*Eur. J. Cancer*
**32A**, 722–726.

CrossRefGoogle ScholarGatenby, R. A. (1998). Mathematical models of tumor-host interactions.

*Cancer J.*
**11**, 289–293.

Google ScholarGatenby, R. A. and E. T. Gawlinski (1996). A reaction-diffusion model of cancer invasion.

*Cancer Res.*
**56**, 5745–5753.

Google ScholarGatenby, R. A. and E. T. Gawlinski (2001). Mathematical models of tumor invasion mediated by transformation-induced alteration of microenvironmental pH, in

*The Tumour Microenvironment: Causes and Consequences of Hypoxia and Acidity*, K. A. Goode and D. J. Chadwick (Eds), Chichester, UK: John Wiley and Sons Ltd.

Google ScholarGatenby, R. A. and E. T. Gawlinski (2003). The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models.

*Cancer Res.*
**63**, 3847–3854.

Google ScholarGatenby, R. A. and P. K. Maini (2003). Cancer summed up.

*Nature*
**421**, 321.

CrossRefGoogle ScholarGimbrone, M. A., R. H. Aster, R. S. Cotran, J. Corkery, J. H. Jandl and J. Folkman (1969). Preservation of vascular integrity in organs perfused in vitro with a platelet-richmedium.

*Nature*
**221**, 33–36.

Google ScholarGlass, L. (1973). Instability and mitotic patterns in tissue growth.

*J. Dyn. Syst. Meas. Control*
**95**, 324–327.

Google ScholarGoldacre, R. J. and B. Sylven (1962). On the access of blood-borne dyes to various tumour regions.

*Br. J. Cancer*
**16**, 306–321.

Google ScholarGompertz, G. (1825). On the nature of the function expressive of the law of human mortality, and on the new mode of determining the value of life contingencies.

*Philos. Trans. R. Soc. London*
**115**, 513–585.

Google ScholarGray, L. H., A. D. Conger, M. Ebert, S. Hornsey and O. C. A. Scott (1955). The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy.

*Br. J. Radiol.*
**9**, 638–648.

Google ScholarGreene, H. S. N. (1961). Heterologous transplantation of mammalian tumors.

*J. Exp. Med.*
**73**, 461.

CrossRefGoogle ScholarGreenspan, H. P. (1972). Models for the growth of a solid tumor by diffusion.

*Stud. Appl. Math.*
**52**, 317–340.

Google ScholarGreenspan, H. P. (1974). On the self-inhibited growth of cell cultures.

*Growth*
**38**, 81–95.

Google ScholarGreenspan, H. P. (1976). On the growth and stability of cell cultures and solid tumors.

*J. Theor. Biol.*
**56**, 229–242.

MathSciNetGoogle ScholarGriffiths, J. D. and A. J. Salsbury (1965).

*Circulating Cancer Cells*, Chicago: Charles C. Thomas, Publishers.

Google ScholarGriffon-Etienne, G., Y. Boucher, C. Brekken, H. D. Suit and R. K. Jain (1999). Taxane-induced apoptotis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications.

*Cancer Res.*
**59**, 3776–3782.

Google ScholarGurtin, M. E. (1973). A system of equations for age-dependent population diffusion.

*Stud. Appl. Math.*
**40**, 389–392.

Google ScholarGurtin, M. E. and R. C. MacCamy (1977). On the diffusion of biological populations.

*Math. Biosci.*
**33**, 35–49.

MathSciNetCrossRefMATHGoogle ScholarGutmann, R., M. Leunig, J. Feyh, A. E. Goetz, K. Messmer, E. Kastenbauer and R. K. Jain (1992). Interstitial hypertension in head and neck tumors in patients: correlation with tumor size.

*Cancer Res.*
**52**, 1993–1995.

Google ScholarHaddow, A. (1938). The biological characters of spontaneous tumours of the mouse, with special reference to the rate of growth.

*J. Path. Bact.*
**47**, 553–565.

CrossRefGoogle ScholarHahnfeldt, P., D. Panigrahy, J. Folkman and L. Hlatky (1999). Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy.

*Cancer Res.*
**59**, 4770–4775.

Google ScholarHaji-Karim, M. and J. Carlsson (1978). Proliferation and viability in cellular spheroids of human origin.

*Cancer Res.*
**38**, 1457–1464.

Google ScholarHarel, L., G. Chatelain and A. Golde (1984). Density dependent inhibition of growth: inhibitory diffusible factors from 3t3 and rous sarcoma virus (rsv)-transformed 3t3 cells.

*J. Cell Phys.*
**119**, 101–106.

CrossRefGoogle ScholarHashizume, H., P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain and D. M. McDonald (2000). Openings between defective endothelial cells explain tumor vessel leakiness.

*Am. J. Pathol.*
**156**, 1363–1380.

Google ScholarHelmlinger, G., P. A. Netti, H. D. Lichtenbeld, R. J. Melder and R. K. Jain (1997). Solid stress inhibits the growth of multicellular tumour spheroids.

*Nat. Biotechnol.*
**15**, 778–783.

CrossRefGoogle ScholarHickman, J. A., C. S. Potten, A. J. Merritt and T. C. Fisher (1994). Apoptosis and cancer chemotherapy.

*Philos. Trans. R. Soc. Lond. B*
**345**, 319–325.

Google ScholarHill, A. V. (1928). The diffusion of oxygen and lactic acid through tissues.

*R. Soc. Proc. B*
**104**, 39–96.

Google ScholarHirst, D. G. and J. Denekamp (1979). Tumour cell proliferation in relation to the vasculature.

*Cell Tissue Kinet.*
**12**, 31–42.

Google ScholarHirst, D. G., J. Denekamp and B. Hobson (1982). Proliferation kinetics of endothelial and tumour cells in three mouse mammary carcinomas.

*Cell Tissue Kinet.*
**15**, 251–261.

Google ScholarHirst, D. G., V. K. Hirst, B. Joiner, V. Prise and K. M. Shaffi (1991). Changes in tumour morphology with alterations in oxygen availability: further evidence for oxygen as a limiting substrate.

*Br. J. Cancer*
**64**, 54–58.

Google ScholarHoger, A., T. J. Van Dyke and V. A. Lubarda (2002). On the growth part of deformation gradient for residually-stressed biological materials (submitted).

Hughes, F. and C. McCulloch (1991). Quantification of chemotactic response of quiescent and proliferating fibroblasts in Boyden chambers by computer-assisted image analysis.

*J. Histochem. Cytochem.*
**39**, 243–246.

Google ScholarHuxley, J. S. (1932).

*Problems of Relative Growth*, New York: The Dial Press.

Google ScholarHuyghe, J. M. and J. D. Janssen (1997). Quadriphasic mechanics of swelling incompressible porous media.

*Int. J. Eng. Sci.*
**35**, 793–802.

CrossRefMATHGoogle Scholar
*Imperial Cancer Research Fund*, ICRF, 1994.

Iwata, K. K., C. M. Fryling, W. B. Knott and G. J. Todaro (1985). Isolation of tumour cell growth-inhibiting factors from a human rhabdomysarcoma cell line.

*Cancer Res.*
**45**, 2689–2694.

Google ScholarJackson, T. L. (2002). Vascular tumor growth and treatment: consequences of polyclonality, competition and dynamic vascular support.

*J. Math. Biol.*
**44**, 201–226.

MATHMathSciNetCrossRefGoogle ScholarJackson, T. L. and H. M. Byrne (2000). A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy.

*Math. Biosci.*
**164**, 17–38.

MathSciNetCrossRefMATHGoogle ScholarJain, R. K. (1987). Transport of molecules across tumor vasculature.

*Cancer Metastasis Rev.*
**6**, 559–593.

CrossRefGoogle ScholarJain, R. K. (1994). Barriers to drug delivery in solid tumors.

*Sci. Am.*
**271**, 58–66.

CrossRefGoogle ScholarJain, R. K. and L. T. Baxter (1998). Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumour: significance of elevated interstitial pressure.

*Cancer Res.*
**48**, 7022–7032.

Google ScholarJain, R. K. and J. Wei (1977). Dynamics of drug transport in solid tumors: distributed parameter model.

*J. Bioeng.*
**1**, 313–330.

Google ScholarJiang, W. G. and R. E. Mansel (1996). Progress in anti-invasion and anti-metastasis research and treatment.

*Int. J. Oncol.*
**9**, 1013–1028.

Google ScholarJones, A. F., H. M. Byrne, J. S. Gibson and J. W. Dold (2000). A mathematical model of the stress induced during avascular tumour growth.

*J. Math. Biol.*
**40**, 473–499.

MathSciNetCrossRefMATHGoogle ScholarKastan, M. B., C. E. Canman and C. J. Leonard (1995). P53, cell cycle control and apoptosis: implications for cancer.

*Cancer Metast. Rev.*
**14**, 3–15.

CrossRefGoogle ScholarKendall, D. G. (1948). On the role of variable cell generation time in the development of a stochastic birth process.

*Biometrika*
**35**, 316–330.

MATHMathSciNetCrossRefGoogle ScholarKerr, J. F. R. (1971). Shrinkage necrosis: a distinct mode of cellular death.

*J. Path.*
**105**, 13–20.

CrossRefGoogle ScholarKerr, J. F. R., A. H. Wyllie and A. R. Currie (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.

*Br. J. Cancer*
**26**, 239–257.

Google ScholarKerr, J. F. R., J. Searle, B. V. Harmon and C. J. Bishop (1987). Apoptosis, in

*Perspectives in Mammalian Cell Death*, C. S. Potten (Ed.), UK: Oxford University Press.

Google ScholarKing, W. E., D. S. Schultz and R. A. Gatenby (1986a). An analysis of systematic tumor oxygenation using multi-region models.

*Chem. Eng. Commun.*
**64**, 137–153.

Google ScholarKing, W. E., D. S. Schultz and R. A. Gatenby (1986b). Multi-region models for describing oxygen tension profiles in human tumors.

*Chem. Eng. Commun.*
**47**, 73–91.

Google ScholarKleinerman, J. and L. A. Liotta (1977). Release of tumor cells, in

*Cancer Invasion and Metastasis: Biologic Mechanisms and Therapy*, S. B. Day

*et al.* (Eds), New York: Raven Press.

Google ScholarKoike, A. (1964). Mechanism of blood-borne metastases. i. Some factors affecting lodgment and growth of tumour cells in the lungs.

*Cancer*
**17**, 450–460.

Google ScholarKolmogorov, A., A. Petrovsky and N. Piscounoff (1988). Study of the diffusion equation with growth of the quantity of matter and its application to a biology problem, in

*Dynamics of Curved Fronts*, Boston: Academic Press.

Google ScholarKunz-Schughart, L. A., M. Kreutz and R. Knuechel (1998). Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology.

*Int. J. Exp. Pathol.*
**79**, 1–23.

CrossRefGoogle ScholarKuo, T. H., T. Kubota, M. Watanabe, T. Furukawa, T. Teramoto, K. Ishibiki, M. Kitajima, A. R. Moosa, S. Penman and R. M. Hoffman (1995). Liver colonization competence governs colon cancer metastasis. *Proc. Natl. Acad. Sci. USA*
**92**, 12085–12089.

Lai, W. M., J. S. Hou and V. C. Mow (1991). A triphasic theory for the swelling and deformation behaviors of articular cartilage.

*J. Biomech. Eng.*
**113**, 245–258.

Google ScholarLai, W. M., V. C. Mow and W. Zhu (1993). Constitutive modelling of articular cartilage and biomacromolecular solutions.

*Trans. ASME*
**115**, 474–480.

Google ScholarLaird, A. K. (1964). Dynamics of tumor growth.

*Br. J. Cancer*
**18**, 490–502.

Google ScholarLaird, A. K. (1965). Dynamics of relative growth.

*Growth*
**29**, 249–263.

Google ScholarLaird, A. K., S. A. Tyler and A. D. Barton (1965). Dynamics of normal growth.

*Growth*
**21**, 233–248.

Google ScholarLandman, K. A. and C. P. Please (2001). Tumour dynamics and necrosis: surface tension and stability.

*IMA J. Math. Appl. Med. Biol.*
**18**, 131–158.

MATHGoogle ScholarLandry, J., J. P. Freyer and R. M. Sutherland (1981). Shedding of mitotic cells from the surface of multicell spheroids during growth.

*J. Cell. Physiol.*
**106**, 23–32.

CrossRefGoogle ScholarLandry, J., J. P. Freyer and R. M. Sutherland (1982). A model for the growth of multicellular spheroids.

*Cell Tissue Kinet.*
**15**, 585–594.

Google ScholarLeu, A. J., D. A. Berk, A. Lymboussaki, K. Alitalo and R. K. Jain (2000). Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation.

*Cancer Res.*
**60**, 4324–4327.

Google ScholarLeunig, M., F. Yuan, M. D. Menger, Y. Boucher, A. E. Goetz, K. Messmer and R. K. Jain (1992). Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adnocarcinoma ls174t in scid mice.

*Cancer Res.*
**52**, 6553–6560.

Google ScholarLevine, E. L.

*et al.* (1995). Apoptosis, intrinsic radiosensitivity and prediction of radiotherapy response in cervical carcinoma.

*Radiother. Oncol.*
**37**, 1–9.

CrossRefGoogle ScholarLiapis, A. I., G. G. Lipscomb and O. K. Crossier (1982). A model of oxygen diffusion in absorbing tissue.

*Math. Modelling*
**3**, 83–92.

MathSciNetCrossRefMATHGoogle ScholarLin, S. H. (1976). Oxygen diffusion in a spheroid cell with non-linear uptake kinetics.

*J. Theor. Biol.*
**60**, 449–457.

CrossRefGoogle ScholarLiotta, L. A. and C. DeLisi (1977). Method for quantitating tumor cell removal and tumor cell-invasive capacity in experimental metastases.

*Cancer Res.*
**37**, 4003–4008.

Google ScholarLiotta, L. A., J. Kleinerman and G. M. Saidel (1974a). Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation.

*Cancer Res.*
**34**, 997–1004.

Google ScholarLiotta, L. A., J. Kleinerman and G. M. Saidel (1974b). Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation.

*Cancer Res.*
**34**, 997–1004.

Google ScholarLiotta, L. A., G. M. Saidel and J. Kleinerman (1974c). Diffusion model of tumor vascularization and growth.

*Bull. Math. Biol.*
**34**, 117–128.

Google ScholarLiotta, L. A., J. Kleinerman and G. M. Saidel (1976a). The significance of hematogenous tumor cell clumps in the metastatic process.

*Cancer Res.*
**36**, 889–894.

Google ScholarLiotta, L. A., G. M. Saidel and J. Kleinerman (1976b). Stochastic model of metastases formation. *Biometrics* 535–550.

Liotta, L. A., G. M. Saidel, J. Kleinerman and C. DeLisi (1977). Micrometastasis therapy: theoretical concepts, in

*Cancer Invasion and Metastasis: Biologic Mechanisms and Therapy*, S. B. Day

*et al.* (Eds), New York: Raven Press.

Google ScholarLoewenstein, W. R. (1981). Junctional intercellular communication: the cell-to-cell membrane channel.

*Physiol. Rev.*
**61**, 829–889.

Google ScholarLomer, E. (1883). Zur frage der heilbarkeit des carcinoms.

*Z. Geburtsh. Gynaek.*
**9**, 277.

Google ScholarLubarda, V. A. and A. Hoger (2002). On the mechanics of solids with a growing mass.

*Int. J. Solids Structures*
**39**, 4627–4664.

CrossRefMATHGoogle ScholarLubkin, S. R. and T. Jackson (2002). Multiphase mechanics of capsule formation in tumors.

*J. Biomech. Eng.*
**124**, 237–243.

CrossRefGoogle ScholarLynch, M. P., S. Nawaz and L. E. Gerschenson (1986). Evidence for soluble factors regulating cell death and cell proliferation in primary cultures of rabbit endometrial cells grown on collagen.

*Proc. Natl. Acad. Sci.*
**83**, 4784–4788.

CrossRefGoogle ScholarMacArthur, B. D. and C. P. Please (2003). Residual stress generation and necrosis formation in multi-cell tumour spheroids. *J. Math. Biol.* (submitted).

Maggelakis, S. A. and J. A. Adam (1990). Mathematical model of prevascular growth of a spherical carcinoma.

*Math. Comput. Modelling*
**13**, 23–38.

CrossRefMATHGoogle ScholarMantzaris, N., S. Webb and H. G. Othmer (2003). Mathematical modelling of tumour-induced angiogenesis. *J. Math. Biol.* (in press).

Marchant, B. P., J. Norbury and A. J. Perumpanani (2000). Traveling shock waves arising in a model of malignant invasion.

*SIAM J. Appl. Math.*
**60**, 463–476.

MathSciNetCrossRefMATHGoogle ScholarMarchant, B. P., J. Norbury and J. A. Sherratt (2001). Travelling wave solutions to a haptotaxis-dominated model of malignant invasion.

*Nonlinearity*
**14**, 1653–1671.

MathSciNetCrossRefMATHGoogle ScholarMartin, G. R. and R. K. Jain (1994). Noninvasive measurement for interstitial pH profiles in normal and neoplastic tissue using fluorescent ration imaging microscopy.

*Cancer Res.*
**54**, 5670–5674.

Google ScholarMayneord, W. V. (1932). On a law of growth of Jensen’s rat sarcoma.

*Am. J. Cancer*
**16**, 841–846.

Google ScholarMcDougall, S. R., A. R. A. Anderson, M. A. J. Chaplain and J. A. Sherratt (2002). Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies.

*Bull. Math. Biol.*
**64**, 673–702.

CrossRefGoogle ScholarMcElwain, D. L. S. (1978). A reexamination of oxygen diffusion in a spheroid cell with Michaelis-Menten oxygen uptake kinetics.

*J. Theor. Biol.*
**71**, 255–267.

CrossRefGoogle ScholarMcElwain, D. L. S., R. Callcott and L. E. Morris (1979). A model of vascular compression in solid tumours.

*J. Theor. Biol.*
**78**, 405–415.

CrossRefGoogle ScholarMcElwain, D. L. S. and L. E. Morris (1978). Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth.

*Math. Biosci.*
**39**, 147–157.

CrossRefGoogle ScholarMcElwain, D. L. S. and G. J. Pettet (1993). Cell migration in multicell spheroids: swimming against the tide.

*Bull. Math. Biol.*
**55**, 655–674.

CrossRefMATHGoogle ScholarMcElwain, D. L. S. and P. J. Ponzo (1977). A model for the growth of a solid tumor with non-uniform oxygen consumption.

*Math. Biosci.*
**35**, 267–279.

CrossRefMATHGoogle ScholarMiyasaka, M. (1995). Cancer metastasis and adhesion molecules.

*Clin. Orth. Rel. Res.*
**312**, 10–18.

Google ScholarMoore, J. V., H. A. Hopkins and W. B. Looney (1983). Response of cell populations in tumor cords to a single dose of cyclophosphamide or radiation.

*Eur. J. Cancer Clin. Oncol.*
**19**, 73–79.

CrossRefGoogle ScholarMoore, J. V., H. A. Hopkins and W. B. Looney (1984). Tumour-cord parameters in two rat hepatomas that differ in their radiobiological oxygenation status.

*Radiat. Envir. Biophys.*
**23**, 213–222.

CrossRefGoogle ScholarMoore, J. V., P. S. Haselton and C. M. Buckley (1985). Tumour cords in 52 human bronchial and cervical squamous cell carcinomas: inferences for their cellular kinetics and radiobiology.

*Br. J. Cancer*
**51**, 407–413.

Google ScholarMottram, J. C. (1936). Factor of importance in radiosensitivity of tumors.

*Br. J. Radiol.*
**9**, 606–614.

CrossRefGoogle ScholarMow, V. C., J. S. Hou, J. M. Owens and A. Ratcliffe (1990a). Biphasic and quasilinear viscoelastic theories for hydrated soft tissues, in

*Biomechanics of Diarthrodial Joints*, New York: Springer.

Google ScholarMow, V. C., J. S. Hou, J. M. Owens and A. Ratcliffe (1990b). Biphasic and quasilinear viscoelastic theories for hydrated soft tissues, in

*Biomechanics of Diarthrodial Joints*, New York: Springer.

Google ScholarMueller-Klieser, W. F. and R. M. Sutherland (1982). Oxygen tensions in multicell spheroids of two cell lines.

*Br. J. Cancer*
**45**, 256–263.

Google ScholarMueller-Klieser, W. (2000). Tumor biology and experimental therapeutics.

*Crit. Rev. Oncol. Hematol.*
**36**, 123–139.

Google ScholarMurray, J. D. (2002).

*Mathematical Biology, I: An Introduction*, Berlin: Springer.

Google ScholarNagle, R. B., J. D. Knox, C. Wolf, G. T. Bowden and A. E. Cress (1994). Adhesion molecules, extracellular matrix and proteases in prostrate carcinoma.

*J. Cell. Biochem. Suppl.*
**19**, 232–237.

Google ScholarNetti, P. A., L. T. Baxter, Y. Boucher, R. Skalak and R. K. Jain (1995). Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery.

*Cancer Res.*
**55**, 5451–5458.

Google ScholarNetti, P. A., L. T. Baxter, Y. Boucher, R. Skalak and R. K. Jain (1997). Macro-and microscopic fluid transport in living tissues: application to solid tumors.

*AIChE J.*
**43**, 818–834.

CrossRefGoogle ScholarNg, I. O. L., E. C. S. Lai, M. M. T. Lai and S. T. Fan (1992). Tumor encapsulation in hepatocellular carcinoma: a pathological study of 198 cases.

*Cancer (N.Y.)*
**70**, 395–413.

Google ScholarNor, J. E., J. Christensen, J. Liu, M. Peters, D. J. Mooney, R. M. Strieter and P. J. Polverini (2001). Up-regulation of bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth.

*Cancer Res.*
**61**, 2183–2188.

Google ScholarOlson, J. S. (2002).

*Bathsheba’s Breast: Women, Cancer and History*, Baltimore: Johns Hopkins University Press.

Google ScholarOrme, M. E. and M. A. J. Chaplain (1996). A mathematical model of vascular tumour growth and invasion.

*Math. Comput. Modelling*
**23**, 43–60.

MathSciNetCrossRefMATHGoogle ScholarOsgood, E. E. (1957). A unifying concept of the etiology of the leukemias, lymphomas, and cancers.

*J. Natl. Cancer Inst.*
**18**, 155–166.

Google ScholarPalka, J., B. Adelmann-Grill, P. Francz and K. Bayreuther (1996). Differentiation stage and cell cycle position determine the chemotactic response of fibroblasts.

*Folia Histochem. Cytobiol.*
**34**, 121–127.

Google ScholarPanetta, J. C. and J. A. Adam (1995). A mathematical model of cycle-specific chemotherapy.

*Math. Comput. Modelling*
**22**, 67–82.

MathSciNetCrossRefMATHGoogle ScholarPassman, S. L. and J. W. Nunziato (1984). A theory of multiphase mixtures, in

*Rational Thermodynamics*, C. Truesdell (Ed.), New York: Springer.

Google ScholarPerumpanani, A. J. Malignant and morphogenetic waves, PhD thesis, Oxford University, Hilary Term, 1996.

Perumpanani, A. J. and H. M. Byrne (1999). Extracellular matrix concentration exerts selection pressure on invasive cells.

*Eur. J. Cancer*
**35**, 1274–1280.

CrossRefGoogle ScholarPerumpanani, A. J. and J. Norbury (1999). Numerical interactions of random and directed motility during cancer invasion.

*Math. Comput. Modelling*
**30**, 123–133.

MathSciNetCrossRefMATHGoogle ScholarPerumpanani, A. J., J. A. Sherratt, J. Norbury and H. M. Byrne (1996). Biological inferences from a mathematical model for malignant invasion.

*Invasion Metastasis*
**16**, 209–221.

Google ScholarPerumpanani, A. J., J. A. Sherratt, J. Norbury and H. M. Byrne (1999). A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion.

*Physica D*
**126**, 145–159.

CrossRefGoogle ScholarPettet, G. J., D. L. S. McElwain and J. Norbury (2000). Lotka-Volterra equations with chemotaxis: walls, barriers and travelling waves.

*IMA J. Math. Appl. Med. Biol.*
**17**, 395–413.

MATHGoogle ScholarPettet, G. J., C. P. Please, M. J. Tindall and D. L. S. McElwain (2001). The migration of cells in multicell tumor spheroids.

*Bull. Math. Biol.*
**63**, 231–257.

CrossRefGoogle ScholarPioletti, D. P., L. R. Rakotomanana, J.-F. Benvenuti and P.-F. Leyvraz (1998). Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons.

*J. Biomech.*
**31**, 753–757.

CrossRefGoogle ScholarPisani, P., F. Bray and D. M. Parkin (2001). Estimates of the world-wide prevalence of cancer for 25 sites in the adult population.

*Int. J. Cancer*
**97**, 72–81.

CrossRefGoogle ScholarPlease, C. P., G. J. Pettet and D. L. S. McElwain (1998). A new approach to modelling the formation of necrotic regions in tumours.

*Appl. Math. Lett.*
**11**, 89–94.

MathSciNetCrossRefMATHGoogle ScholarPlease, C. P., G. J. Pettet and D. L. S. McElwain (1999). Avascular tumour dynamics and necrosis.

*Math. Models Methods Appl. Sci*
**9**, 569–579.

CrossRefMATHGoogle ScholarPorter, R. (1997).

*The Greatest Benefit to Mankind: A Medical History of Humanity from Antiquity to the Present*, London: Harper Collins Publishers.

Google ScholarPreziosi, L. and A. Farina (2002). On Darcy’s law for growing porous media.

*Int. J. Non-Linear Mechanics*
**37**, 485–491.

CrossRefMATHGoogle ScholarRaff, M. C. (1992). Social controls on cell survival and cell death.

*Nature*
**356**, 397–400.

CrossRefGoogle ScholarRajagopal, K. R. and A. R. Srinivasa (1998). Mechanics of the inelastic behavior of materials. i. Theoretical underpinnings.

*Int. J. Plast.*
**14**, 945–967.

CrossRefMATHGoogle ScholarRajagopal, K. R. and L. Tao (1995).

*Mechanics of Mixtures*, Singapore: World Scientific.

MATHGoogle ScholarRitchie, A. C. (1970). The classification morphology and behaviour of tumours, in *General Pathology*, 4th edn, H. E. W. Florey (Ed.), Lloyd-Luke.

Robbins, S. L., R. S. Cotran and V. Kuman (1984). Neoplasia, in

*Pathologic Basis of Disease*, 3rd edn, W. B. Saunders (Ed.), Philadelphia: Saunders Co.

Google ScholarRobertson, T. B. (1923).

*The Chemical Basis of Growth and Senescence*, Philadelphia: J. B. Lippincott Co.

Google ScholarRodriguez, E. K., A. Hoger and A. D. McCulloch (1994). Stress-dependent finite growth in soft elastic tissues.

*J. Biomech.*
**27**, 455–467.

CrossRefGoogle ScholarRuoslahti, E. (1996). How cancer spreads. *Sci. Am.* 42–47.

Ruoslahti, E. (2002). Specialization of tumour vasculature.

*Nat. Rev. Cancer*
**2**, 83–90.

CrossRefGoogle ScholarSaidel, G. M., L. A. Liotta and J. Kleinerman (1976). System dynamics of a metastatic process from an implanted tumor.

*J. Theor. Biol.*
**56**, 417–434.

Google ScholarSchultz, D. S. and W. E. King (1987). On the analysis of oxygen diffusion in biological systems.

*Math. Biosci.*
**83**, 179–190.

CrossRefMATHGoogle ScholarSeftor, R. E., E. A. Seftor, K. R. Gehlsen and W. G. Stetler-Stevenson (1992). Role of alpha-v-beta-3 integrin in human melanoma cell invasion.

*Proc. Natl. Acad. Sci. USA*
**89**, 1557–1561.

CrossRefGoogle ScholarShannon, M. A. and B. Rubinsky (1992). The effect of tumour growth on the stress distribution in tissue.

*Adv. Biol. Heat Mass Transfer*
**231**, 35–38.

Google ScholarSherratt, J. A. (1990). Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations.

*Proc. R. Soc. Lond. B*
**241**, 29–36.

Google ScholarSherratt, J. A. (1993). Cellular growth and travelling waves of cancer.

*SIAM Appl. Math.*
**53**, 1713–1730.

MATHMathSciNetCrossRefGoogle ScholarSherratt, J. A. (2000). Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations.

*Proc. R. Soc. Lond. A.*
**53**, 2365–2386.

MathSciNetGoogle ScholarSherratt, J. A. and M. A. J. Chaplain (2001). A new mathematical model for avascular tumour growth.

*J. Math. Biol.*
**43**, 291–312.

MathSciNetCrossRefMATHGoogle ScholarShymko, R. M. and L. Glass (1976). Cellular and geometric control of tissue growth and mitotic instability.

*J. Theor. Biol.*
**63**, 355–374.

CrossRefGoogle ScholarSkalak, R. (1981). Growth as a finite displacement field, in *Proceedings of the IUTAM Symposium on Finite Elasticity*, The Hague, D. E. Carlson and R. T. Shield (Eds), Martinus Nijhoff Publishers, pp. 347–355.

Skalak, R., G. Dasgupta and M. Moss (1982). Analytical description of growth.

*J. Theor. Biol.*
**94**, 555–577.

MathSciNetCrossRefGoogle ScholarSkalak, R., S. Zargaryan, R. K. Jain, P. A. Netti and A. Hoger (1996). Compatibility and the genesis of residual stress by volumetric growth.

*J. Math. Biol.*
**34**, 889–914.

MATHGoogle ScholarSleeman, B. D. and H. R. Nimmo (1998). Fluid transport in vascularized tumours and metastasis.

*IMA J. Math. Appl. Med. Biol.*
**15**, 53–63.

MATHGoogle ScholarSnijders, H., J. Huyghe, P. Willems, M. Drost, J. Janssen and A. Huson (1992). A mixture approach to the mechanics of the human intervertebral disc, in

*Mechanics of Swelling*, T. K. Karalis (Ed.), Berlin, Heidelberg: Springer.

Google ScholarStainsby, W. N. and A. B. Otis (1961). Blood flow, blood oxygen tension, oxygen uptake and oxygen transport in skeletal muscle.

*Am. J. Physiol.*
**201**, 117–122.

Google ScholarStetler-Stevenson, W. G., S. Aznavoorian and L. A. Liotta (1993). Tumor cell interactions with the extra-cellular matrix during invasion and metastasis.

*Annu. Rev. Cell Biol.*
**9**, 541–573.

CrossRefGoogle ScholarStohrer, M., Y. Boucher, M. Stangassinger and R. K. Jain (2000). Oncotic pressure in solid tumors is elevated.

*Cancer Res.*
**60**, 4251–4255.

Google ScholarSutherland, R. M. (1988). Cell and environment interactions in tumor microregions: the multicell spheroid model.

*Science*
**240**, 177–184.

Google ScholarSutherland, R. M. and R. E. Durand (1973). Hypoxic cells in an in vitro tumour model.

*Int. J. Radiat. Biol.*
**23**, 235–246.

Google ScholarSutherland, R. M., J. A. McCredie and W. R. Inch (1971). Growth of multicell spheroids in tissue culture as a model of nodular carcinomas.

*J. Natl. Cancer Inst.*
**46**, 113–120.

Google ScholarSwan, G. W. (1981).

*Lecture Notes in Biomathematics*, Vol. 42, Berlin: Springer.

Google ScholarTaber, L. A. (1995). Biomechanics of growth, remodeling and morphogenesis.

*Appl. Mech. Rev.*
**48**, 487–545.

CrossRefGoogle ScholarTaber, L. A. and D. W. Eggers (1996). Theoretical study of stress-modulated growth in the aorta.

*J. Theor. Biol.*
**180**, 343–357.

CrossRefGoogle ScholarTaber, L. A. and R. Perucchio (2000). Modeling heart development.

*J. Elasticity*
**61**, 165–197.

MathSciNetCrossRefMATHGoogle ScholarTakahashi, M. (1966). Theoretical basis for cell cycle analysis. i. Labelled mitosis wave method.

*J. Theor. Biol.*
**13**, 202–211.

CrossRefGoogle ScholarTakahashi, M. (1968). Theoretical basis for cell cycle analysis. ii. Further studies on labelled mitosis wave method.

*J. Theor. Biol.*
**18**, 195.

CrossRefGoogle ScholarTannock, I. F. (1968). The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour.

*Br. J. Cancer*
**22**, 258–273.

Google ScholarTannock, I. F. and A. Howes (1973). The response of viable tumor cords to a single dose of radiation.

*Radiat. Res.*
**55**, 477–486.

Google ScholarThames, H. D., A. C. C. Ruifrok, L. Milas, N. Hunter, K. A. Mason, N. H. A. Terry and R. A. White (1996). Accelerated repopulation during fractionated-irradiation of a murine ovarian carcinoma: down-regulation of apoptosis as a possible mechanism.

*Int. J. Radiat. Oncol. Biol. Phys.*
**35**, 951–962.

CrossRefGoogle ScholarThomlinson, R. H. and L. H. Gray (1955). The histological structure of some human lung cancers and the possible implications for radiotherapy.

*Br. J. Cancer*
**9**, 539–549.

Google ScholarThompson, K. E. and H. M. Byrne (1999). Modelling the internalization of labelled cells in tumour spheroids.

*Bull. Math. Biol.*
**61**, 601–623.

CrossRefGoogle ScholarTracqui, P., G. C. Cruywagen, D. E. Woodward, G. T. Bartoo, J. D. Murray and E. G. Alvord (1995). A mathematical model of glioma growth—the effect of chemotherapy on spatiotemporal growth.

*Cell Prolif.*
**28**, 17–31.

Google ScholarTruesdell, C. and W. Noll (1965). The non-linear field theories of mechanics, in

*Handbuch der Physik*, Flugge (Ed.), Vol. III/III, Berlin: Springer.

Google ScholarTruesdell, C. and R. Toupin (1960). The classical field theories, in

*Handbuch der Physik*, S. Flugge (Ed.), vol. III/I, Berlin: Springer.

Google ScholarTyzzer, E. E. (1913). Factors in production and growth of tumour metastasis.

*J. Med. Res.*
**28**, 309–332.

Google ScholarVaidya, V. G. and F. J. Alexandro (1982). Evaluation of some mathematical models for tumour growth.

*Int. J. Biomed. Comput.*
**13**, 19–35.

MathSciNetCrossRefGoogle ScholarVan Dyke, T. J. and A. Hoger (2001). Rotations in the theory of growth for soft biological materials, in *Proceedings of the 2001 ASME Bioengineering Conference, BED-Vol. 50*, USA, pp. 647–648.

Van Lancker, M., C. Goor, R. Sacre, J. Lamote, S. Van Belle, N. De Coene, A. Roelstraete and G. Storme (1995). Patterns of axillary lymph node metastasis in breast cancer.

*Am. J. Clin. Oncol.*
**18**, 267–272.

Google ScholarVolpe, J. G. P. (1988). Genetic instability of cancer: why a metastatic tumor is unstable and a benign tumor is stable.

*Cancer Genet. Cytogenet.*
**14**, 125–134.

CrossRefGoogle Scholarvon Bertalanffy, L. (1960).

*Fundamental Aspects of Normal and Malignant Growth*, W. W. Nowinsky (Ed.), Amsterdam: Elsevier, pp. 137–259 (Chapter 2).

Google ScholarWarburg, O. (1930).

*The Metabolism of Tumors*, London: Constable Press.

Google ScholarWard, J. P. (1997). Mathematical modelling of avascular tumour growth, PhD thesis, Nottingham University.

Ward, J. P. and J. R. King (1997). Mathematical modelling of avascular tumour growth.

*IMA J. Math. Appl. Med. Biol.*
**14**, 36–69.

Google ScholarWard, J. P. and J. R. King (1999a). Mathematical modelling of avascular tumour growth, ii. Modelling growth saturation.

*IMA J. Math. Appl. Med. Biol.*
**16**, 171–211.

MATHGoogle ScholarWard, J. P. and J. R. King (1999b). Mathematical modelling of the effects of mitotic inhibitors on avascular tumour growth.

*J. Theor. Med.*
**1**, 287–311.

MATHGoogle ScholarWard, J. P. and J. R. King (2000). Modelling the effect of cell shedding on avascular tumour growth.

*J. Theor. Med.*
**2**, 155–174.

MATHGoogle ScholarWard, J. P. and J. R. King (2003). Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures.

*Math. Biosci.*
**181**, 177–207.

MathSciNetCrossRefMATHGoogle ScholarWebb, S. D., J. A. Sherratt and R. G. Fish (1999a). Alterations in proteolytic activity at low pH and its association with invasion: a theoretical model.

*Clin. Exp. Metastasis*
**17**, 397–407.

CrossRefGoogle ScholarWebb, S. D., J. A. Sherratt and R. G. Fish (1999b). Mathematical modelling of tumour acidity: regulation of intracellular pH.

*J. Theor. Biol.*
**196**, 237–250.

CrossRefGoogle ScholarWein, L. M., J. T. Wu, A. G. Ianculescu and R. K. Puri (2002). A mathematical model of the impact of infused targeted cytotoxic agents on brain tumours: implications for detection, design and delivery.

*Cell Prolif.*
**35**, 343–361.

CrossRefGoogle ScholarWeiss, L. (2000). The morphologic documentation of clinical progression, invasion metastasis—staging.

*Cancer Metastasis Rev.*
**19**, 303–313.

CrossRefGoogle ScholarWette, R., I. N. Katz and E. Y. Rodin (1974a). Stochastic processes for solid tumor kinetics i. Surface-regulated growth.

*Math. Biosci.*
**19**, 231–255.

CrossRefMATHGoogle ScholarWette, R., I. N. Katz and E. Y. Rodin (1974b). Stochastic processes for solid tumor kinetics ii. Diffusion-regulated growth.

*Math. Biosci.*
**21**, 311–338.

CrossRefMATHGoogle ScholarWinsor, C. P. (1932). The Gompertz curve as a growth curve. *Proc. Natl. Acad. Sci. USA* 1–7.

Yuhas, J. M. and A. P. Li (1978). Growth fraction as the major determinant of multicellular tumor spheroid growth rates.

*Cancer Res.*
**38**, 1528–1532.

Google ScholarYuhas, J. M., A. E. Tarleton and K. B. Molzen (1978). Multicellular tumor spheroid formation by breast cancer cells isolated from different sites.

*Cancer Res.*
**38**, 2486–2491.

Google ScholarZnati, C. A., M. Rosenstein, Y. Boucher, M. W. Epperly, W. D. Bloomer and R. K. Jain (1996). Effect of radiation on interstitial fluid pressure and oxygenation in a human tumor xenograft.

*Cancer Res.*
**56**, 964–968.

Google Scholar