Skip to main content

Advertisement

Log in

Mathematical models for the Aedes aegypti dispersal dynamics: Travelling waves by wing and wind

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Biological invasion is an important area of research in mathematical biology and more so if it concerns species which are vectors for diseases threatening the public health of large populations. That is certainly the case for Aedes aegypti and the dengue epidemics in South America. Without the prospect of an effective and cheap vaccine in the near future, any feasible public policy for controlling the dengue epidemics in tropical climates must necessarily include appropriate strategies for minimizing the mosquito population factor. The present paper discusses some mathematical models designed to describe A. aegypti’s vital and dispersal dynamics, aiming to highlight practical procedures for the minimization of its impact as a dengue vector. A continuous model including diffusion and advection shows the existence of a stable travelling wave in many situations and a numerical study relates the wavefront speed to a few crucial parameters. Strategies for invasion containment and its prediction based on measurable parameters are analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Carr, J., 1981. Applications of Center Manifold Theory. Springer, New York.

    Google Scholar 

  • Cummings, D.A.T., Irizarry, R.A., Huang, N.E., Endy, T.P., Nisalak, A., Ungchusak, K., Burke, D.S., 2004. Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature 427, 344–347.

    Article  Google Scholar 

  • Ereno, D., 2003. Novas armas contra a dengue. Revista Pesquisa Fapesp 85. http://revistapesquisafapesp.br.

  • Ermentrout, B., 2002. Simulating, Analyzing, and Animating Dynamical Systems. A Guide to XPPAUT for Researchers and Students. SIAM.

  • Ferreira, C.P., Yang, H.M., 2003. Estudo dinâmico da população de mosquitos Aedes aegypti, TEMA—Seleta do XXV CNMAC 4.2, SBMAC e FAPESP, São Carlos e São Paulo, pp. 187–196.

    Google Scholar 

  • Gubler, D.J., 1998. Dengue and dengue hemorrhagic fever. Clin. Microb. Rev. 11, 480–496.

    Google Scholar 

  • Hagstrom, T, Keller, H.B., 1986. The numerical calculation of travelling wave solutions of nonlinear parabolic equations. SIAM J. Sci. Stat. Comput. 7, 978–985.

    Article  MathSciNet  MATH  Google Scholar 

  • Hartman, P., 1973. Ordinary Differential Equations. Hartman, Baltimore.

    MATH  Google Scholar 

  • Heinze, S., Papanicolaou, G., Stevens, A., 2001. Variational principles for propagation speeds in inhomogeneous media. SIAM J. Appl. Math. 621, 129–148.

    Article  MathSciNet  Google Scholar 

  • Lucia, M., Muratov, C.B., Novaga, M., 2004. Linear vs. nonlinear selection for the propagation speed of the solutions of scalar reaction-diffusion equations invading an unstable equilibrium. Comm. Pure Appl. Math. 57, 616–636.

    Article  MathSciNet  MATH  Google Scholar 

  • Murray, J.D., 1993. Mathematical Biology. Springer, Berlin.

    MATH  Google Scholar 

  • Murray, J.D., Stanley, E.A., Brown, D.L., 1986. On the spatial spread of rabies among foxes. Proc. R. Soc. Lond. B 229, 111–150.

    Article  Google Scholar 

  • Pauwelussen, J.P., 1981. Nerve impulse propagation in a branching nerve system: a simple model. Physica 4D, 67–88.

    MathSciNet  Google Scholar 

  • Potapov, A.B., Lewis, M.A., 2004. Climate and competition: the effect of moving range boundaries on habitat invasibility. Bull. Math. Biol. 66, 975–1008.

    Article  MathSciNet  Google Scholar 

  • Sandstede, B., 2002. Stability of travelling waves. In: Fiedler, B. (Ed.), Handbook of Dynamical Systems II. Elsevier, Amsterdam, pp. 983–1059.

    Google Scholar 

  • Segel, L.A. (Ed.), 1980. Mathematical Models in Molecular and Cellular Biology. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Shigesada, N., Kawasaki, K., 1997. Biological Invasions: Theory and Practice. Oxford University Press.

  • Takahashi, L.T., 2004. Modelos Matemáticos de Epidemiologia com Vetores: Simulação da Propagação Urbana e Geográfica da Dengue. Ph.D. Thesis, Univ. Estadual de Campinas—UNICAMP, Campinas, Brazil.

    Google Scholar 

  • Teixeira, C.F., da S. Augusto, L.G., Morata, T.C., 2003. Hearing health of workers exposed to noise and insecticides. Rev. Saúde Pública 37, 417–423.

    Article  Google Scholar 

  • Vasconcelos, P.F.C., Rosa, A.P.A.T., Pinheiro, F.P., Rodrigues, S.G., Rosa, E.S.T., Cruz, A.C.R., Rosa, J.F.S.T., 1999. Aedes aegypti, dengue and re-urbanization of yellow fever in Brazil and other South American Countries—past and present situation and future perspectives. Dengue Bulletin 23, 1–10. http://www.cepis.ops-oms.org/bvsair/e/repindex/repi78/pagina/text/fulltext/vol23.pdf.

    Google Scholar 

  • Veronesi, R., 1991. Doenças Infecciosas e Parasitárias. Guanabara Koogan, Rio de Janeiro.

    Google Scholar 

  • Volpert, A.I., Volpert, V.A., 1994. Travelling Wave Solutions of Parabolic Systems. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Weinberger, F.H., 1982. Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396.

    Article  MATH  MathSciNet  Google Scholar 

  • Yang, H.M., Ferreira, C.P., Ternes, S., 2003. Dinâmica populacional do vetor transmissor da dengue, TEMA-Seleta do XXV CNMAC 4.2, SBMAC e FAPESP, São Carlos e São Paulo, pp. 287–296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilson Castro Ferreira Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, L.T., Maidana, N.A., Ferreira, W.C. et al. Mathematical models for the Aedes aegypti dispersal dynamics: Travelling waves by wing and wind. Bull. Math. Biol. 67, 509–528 (2005). https://doi.org/10.1016/j.bulm.2004.08.005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.08.005

Keywords

Navigation