Skip to main content

Advertisement

Log in

Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present a multi-scale computer simulator of cancer progression at the tumoral level, from avascular stage growth, through the transition from avascular to vascular growth (neo-vascularization), and into the later stages of growth and invasion of normal tissue. We use continuum scale reaction-diffusion equations for the growth component of the model, and a combined continuum-discrete model for the angiogenesis component. We use the level set method for describing complex topological changes observed during growth such as tumor splitting and reconnection, and capture of healthy tissue inside the tumor. We use an adaptive, unstructured finite element mesh that allows for finely resolving important regions of the computational domain such as the necrotic rim, the tumor interface and around the capillary sprouts. We present full nonlinear, two-dimensional simulations, showing the potential of our virtual cancer simulator. We use microphysical parameters characterizing malignant glioma cells, obtained from recent in vitro experiments from our lab and from clinical data, and provide insight into the mechanisms leading to infiltration of the brain by the cancer cells. The results indicate that diffusional instability of tumor mass growth and the complex interplay with the developing neo-vasculature may be powerful mechanisms for tissue invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acker, H., Carlsson, J., Durand, R., Sutherland, R. (Eds.), 1984. Spheroids in Cancer Research. Springer, Berlin, Heidelberg.

    Google Scholar 

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., 2002. Molecular Biology of the Cell, 4th edition. Garland Science, New York.

    Google Scholar 

  • Ambrosi, D., Mollica, F., 2002. On the mechanics of a growing tumor. Int. J. Eng. Sci. 40, 1297.

    Article  MathSciNet  Google Scholar 

  • Anderson, A., Chaplain, M., 1998. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–900.

    Article  MATH  Google Scholar 

  • Araujo, R., McElwain, D., 2003. A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol. (in press).

  • Arnold, D., Brezzi, F., Fortin, M., 1984. A stable finite-element method for the stokes equations. Calcolo 21, 337.

    MathSciNet  MATH  Google Scholar 

  • Ausprunk, D., Folkman, J., 1977. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumour angiogenesis. Microvasc. Res. 14, 53–65.

    Article  Google Scholar 

  • Barth, T., Sethian, J., 1998. Numerical schemes for the Hamilton-Jacobi level set equations on triangulated domains. J. Comput. Phys. 145, 1.

    Article  MathSciNet  MATH  Google Scholar 

  • Batchelor, G., 1967. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Bellomo, N., Preziosi, L., 2000. Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math. Comput. Modelling 32, 413–542.

    Article  MathSciNet  MATH  Google Scholar 

  • Braess, D., 1997. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Breward, C., Byrne, H., Lewis, C., 2003. A multiphase model describing vascular tumour growth. Bull. Math. Biol. 65, 609–640.

    Article  Google Scholar 

  • Bussolino, F., Arese, M., Audero, E., Giraudo, E., Marchiò, S., Mitola, S., Primo, L., Serini, G., 2003. Biological aspects of tumour angiogenesis. In: Cancer Modelling and Simulation. Chapman and Hall/CRC, London, pp. 1–22 (Chapter 1).

    Google Scholar 

  • Byrne, H., Chaplain, M., 1995. Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130, 151–181.

    Article  MATH  Google Scholar 

  • Byrne, H., Chaplain, M., 1996. Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135, 187–216.

    Article  MATH  Google Scholar 

  • Byrne, H., Chaplain, M., 1997. Free boundary value problems associated with the growth and development of multicellular spheroids. Eur. J. Appl. Math. 8, 639.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaplain, M., 1996. Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development. Math. Comput. Modelling 23, 47–87.

    Article  MATH  Google Scholar 

  • Chaplain, M., Anderson, A., 2003. Mathematical modelling of tissue invasion. In: Cancer Modelling and Simulation. Chapman and Hall/CRC, London, pp. 269–298 (Chapter 10).

    Google Scholar 

  • Chaplain, M., Stuart, A., 1993. A model mechanism for the chemotactic response of endothelial cells to tumor angiogenesis factor. IMA J. Math. Appl. Med. Biol. 10, 149–168.

    MATH  Google Scholar 

  • Cockburn, B., 1999. Discontinuous galerkin methods for convection-dominated problems. In: High-Order Methods for Computational Physics. Lecture Notes in Computational Science and Engineering, vol. 9. Springer, pp. 69–224.

  • Cockburn, B., Dawson, C., 2000. Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions. In: Whiteman, J. (Ed.), The Proceedings of the Conference on the Mathematics of Finite Elements and Applications: MAFELAP X. Elsevier, pp. 225–238.

  • Cockburn, B., Shu, C.-W., 1998. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463.

    Article  MathSciNet  MATH  Google Scholar 

  • Cockburn, B., Shu, C.-W., 2001. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261.

    Article  MathSciNet  MATH  Google Scholar 

  • Cristini, V., Blawzdziewicz, J., Loewenberg, M., 2001. An adaptive mesh algorithm for evolving surfaces: simulations of drop breakup and coalescence. J. Comput. Phys. 168, 445–463.

    Article  MATH  Google Scholar 

  • Cristini, V., Lowengrub, J., Nie, Q., 2003. Nonlinear simulation of tumor growth. J. Math. Biol. 46, 191–224.

    Article  MathSciNet  MATH  Google Scholar 

  • Elman, H., Golub, G., 1994. Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31, 1645–1661.

    Article  MathSciNet  MATH  Google Scholar 

  • Fortin, M., Brezzi, F., 1991. Mixed and Hybrid Finite Elements. Springer, New York.

    Google Scholar 

  • Frieboes, H., Cristini, V., 2004. Diffusional instability as a mechanism for glioblastoma growth and invasion (in preparation).

  • Friedl, P., Brocker, E., Zanker, K., 1998. Integrins, cell matrix interactions and cell migration strategies: fundamental differences in leukocytes and tumor cells. Cell Adhe. Commun. 6, 225.

    Article  Google Scholar 

  • Friedman, A., Reitich, F., 1999. Analysis of a mathematical model for the growth of tumors. J. Math. Biol. 38, 262.

    Article  MathSciNet  MATH  Google Scholar 

  • Gatenby, R., Gawlinski, E., 1996. A reaction-diffusion model of cancer invasion. Cancer Res. 56, 5745.

    Google Scholar 

  • Gimbrone, M., Cotran, R., Leapman, S., Folkman, J., 1974. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. Natl. Cancer Inst. 52, 413–427.

    Google Scholar 

  • Greenspan, H., 1976. On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56, 229–242.

    MathSciNet  Google Scholar 

  • Hanahan, D., Weinberg, R., 2000. The hallmarks of cancer. Cell 100, 57–70.

    Article  Google Scholar 

  • Isaacson, E., Keller, H., 1966. Analysis of Numerical Methods. Wiley, New York.

    MATH  Google Scholar 

  • LeVeque, R., 1992. Numerical Methods for Conservation Laws. Birkhäuser, Berlin.

    MATH  Google Scholar 

  • Lubarda, V., Hoger, A., 2002. On the mechanics of solids with a growing mass. Int. J. Solids Structures 39, 4627.

    Article  MATH  Google Scholar 

  • Maher, E., Furnari, F., Bachoo, R., Rowitch, D., Louis, D., Cavenee, W., De-Pinho, R., 2001. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 15, 1311.

    Article  Google Scholar 

  • Mantzaris, N., Webb, S., Othmer, H., 2003. Mathematical modelling of tumor-induced angiogenesis. Technical Report: School of Mathematics, University of Minnesota, Minneapolis, MN, USA.

    Google Scholar 

  • McDougall, S., Anderson, A., Chaplain, M., Sherratt, J., 2002. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64, 673–702.

    Article  Google Scholar 

  • Natarajan, M., Hacker, T., Gladson, C., 2003. Fak signaling in anaplastic astrocytoma and glioblastoma tumors. Cancer J. 9, 127.

    Article  Google Scholar 

  • Ortega, J., Reinbolt, W., 1970. Iterative Solution of Nonlinear Equations in Several Variable. Academic Press, San Diego.

    Google Scholar 

  • Osher, S., 1984. Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal. 21, 217–235.

    Article  MATH  MathSciNet  Google Scholar 

  • Osher, S., Fedkiw, R., 2003. Level Set Methods and Dynamic Implicit Surfaces. Springer, New York.

    MATH  Google Scholar 

  • Osher, S., Sethian, J., 1988. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys. 79, 12.

    Article  MathSciNet  MATH  Google Scholar 

  • Paku, S., Paweletz, N., 1991. First step of tumor-related angiogenesis. Lab. Invest. 65, 334–346.

    Google Scholar 

  • Paweletz, N., Knierim, M., 1989. Tumor-related angiogenesis. Crit. Rev. Oncol. Hematol. 9, 197–242.

    Google Scholar 

  • Strang, G., 1968. On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517.

    Article  MATH  MathSciNet  Google Scholar 

  • Sussman, M., Smereka, P., Osher, S., 1994. A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146.

    Article  MATH  Google Scholar 

  • Tiller, W., 1965. Migration of a liquid zone through a solid. 3. J. Appl. Phys. 36, 261.

    Article  Google Scholar 

  • Truskey, G., Yuan, F., Katz, D., 2004. Transport Phenomena in Biological Systems. Pearson Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Tyson, R., Stern, L., LeVeque, R., 2000. Fractional step methods applied to a chemotaxis model. J. Math. Biol. 41, 455–475.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Cristini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X., Wise, S.M. & Cristini, V. Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol. 67, 211–259 (2005). https://doi.org/10.1016/j.bulm.2004.08.001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.08.001

Keywords

Navigation